首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drought‐related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem‐scale rainfall manipulation of a piñon–juniper (Pinus edulisJuniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (Ecrit). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from Ecrit were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near‐zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought‐related mortality in piñon pine.  相似文献   

2.
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.

Decline in carbohydrate storage is strongly associated with progressive mortality of trees under frequent seawater exposure, and starch is almost completely consumed at crown death.  相似文献   

3.
Drought‐ and insect‐associated tree mortality at low‐elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low‐elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole‐crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa?pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa?pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa?pc to climate, and a steep relationship between pa?pc and BAI/BA. The pa?pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low‐elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid‐latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.  相似文献   

4.
Pressure-volume technique was utilized to evaluate salinity response among three populations ofSpartina patens (Ait.) Muhl. from Louisiana Gulf coast marshes. Plants were subjected to salinities of 85 and 425 mol m?3 for 77 d in a greenhouse. Ψw and Ψπ decreased in all populations in response to increases in salinity. There were 32% decrease in Ψsat, 42% decrease in Ψtlp in response to salinity changes from 85 to 425 mol m?3 in the Ferblanc population. Similarly, there were 35% and 41% decrease in Ψsat in the Clovelly and Lake Tambour populations, respectively. All populations showed the ability to adapt to the increased salinity as was evidenced by osmotic adjustment. However, the Lake Tambour population appeared to have superior ability to adapt to high salinity through having a significantly lower osmotic potential at saturation (Ψsat), osmotic potential at turgor loss point (Ψtlp), and maximum turgor potential (ΨP(max)) compared to other populations. Ferblanc and Clovelly populations revealed the ability to adapt to saline environments to a lesser extent as compared to the Lake Tambour population. Results indicate that there is a potential for selection of superior strains ofSpartina patens for use in marsh restoration projects aiming at prevention of wetland loss in certain coastal areas.  相似文献   

5.
Environmental sensitivity of gas exchange in different-sized trees   总被引:1,自引:0,他引:1  
The carbon isotope signature (δ13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in δ13C of the very foliage used for the gas exchange measurements. Since δ13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring. If gas exchange differs with tree size during wet but not dry conditions, then this further implies that environmental sensitivity of leaf gas exchange varies as a function of tree size. These implications are consistent with theoretical relationships among height, hydraulic conductance and gas exchange. We investigated the environmental sensitivity of gas exchange in different-sized Douglas-fir (Pseudotsuga menziesii) via a detailed process model that specifically incorporates size-related hydraulic conductance [soil–plant–atmosphere (SPA)], and empirical measurements from both wet and dry periods. SPA predicted, and the empirical measurements verified, that differences in gas exchange associated with tree size are greatest in wet and mild environmental conditions and minimal during drought. The results support the hypothesis that annual net carbon assimilation and transpiration of trees are limited by hydraulic capacity as tree size increases, even though at particular points in time there may be no difference in gas exchange between different-sized trees. Maximum net ecosystem exchange occurs in spring in Pacific Northwest forests; therefore, the presence of hydraulic limitations during this period may play a large role in carbon uptake differences with stand-age. The results also imply that the impacts of climate change on the growth and physiology of forest trees will vary depending on the age and size of the forest.  相似文献   

6.
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na+ concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.  相似文献   

7.
Trees drought responses could be developed in the short- or in the long-term, aiming at sustaining carbon fixation and water use efficiency (WUE). The objective of this study was to examine short- and long-term adjustments occurring in different size Pinus ponderosa Dougl. ex P. & C. Laws trees in response to seasonal drought when they are growing under different competition level. The following variables were studied: branch and stem hydraulic conductivity, canopy and stomatal conductance (gc, gs), transpiration (E), photosynthesis (A max), wood δ13C (as a proxy of intrinsic WUE), leaf to sapwood area ratio (A L:A s) and growth in the biggest (B) and the smallest (S) trees of high (H) and low (L) density stands. A L:A s was positively correlated with tree size and negatively correlated with competition level, increasing leaf hydraulic conductance in H trees. Accordingly, higher gc and E per unit A L were found in H than in L trees when soil water availability was high, but decreased abruptly during dry periods. BL trees maintained stable gc and E values even during the summer drought. The functional adjustments observed in H trees allow them to maintain their hydraulic integrity (no apparent k s losses), but their stem and leaf growth were severely affected by drought events. iWUE was similar between all tree groups in a wet season, whereas it significantly decreased in SH trees in a dry season suggesting that when radiation and water are co-limiting gas exchange, functional adjustments not only affect absolute growth, but also WUE.  相似文献   

8.
Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non‐stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (RX) and stem hydraulic capacitance (CS) with predawn water potential (ΨPD). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when CS was allowed to decrease with decreasing ΨPD. Hydraulic capacitance decreased from 62 to 25 kg m?3 MPa?1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in CS for tree hydraulic functioning, and they suggest that CS should be considered to predict the drought response of trees with models.  相似文献   

9.
Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or ‘wilting’ point (πtlp). As soil dries, plants shift πtlp by accumulating solutes (i.e. ‘osmotic adjustment’). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (?0.44 MPa), accounting for 16% of post‐drought πtlp. Thus, pre‐drought πtlp was a considerably stronger predictor of post‐drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post‐drought πtlp. Climate was correlated with pre‐ and post‐drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply.  相似文献   

10.
Hydraulic properties and gas exchange were measured in branches of two tropical tree species (Simarouba amara Aubl. and Tapirira guianensis Aubl.) in a moist lowland forest in Panama. Branch-level sapflow, leaf-level stomatal conductance, and water potential measurements, along with measurements of specific hydraulic conductivity of stems in crown tops, were used to relate hydraulic parameters to leaf conductance in two individuals of each species. Branches of the taller trees for each species (28 m, 31 m) showed much higher leaf-specific hydraulic conductance and leaf vapor-phase conductance than those of the smaller trees (18m, 23m). This was probably related to the leaf-to-sapwood area ratio in branches of taller trees, which was less than half that in branches of smaller trees. Dye staining showed evidence of massive cavitation in all trees, indicating that stomata do not control leaf water potential to prevent xylem cavitation in these species. Stomatal conductance of intact leaves also appeared to be insensitive to leaf area removal treatment of nearby foliage. Nevertheless, a simple mass-balance model of water flux combining hydraulic and vapor transport was in close agreement with observed maximal vapor-phase conductance in the four trees (r2=0.98, P=0.006). Our results suggest that the major organismal control over water flux in these species is by structural (leaf area) rather than physiological (stomatal) means.  相似文献   

11.
Pressure–volume (P–V) curves are frequently used to analyze water relation properties of woody plants in response to transpiration-induced tissue water loss. In this study, P–V analyses were conducted on eight woody species growing in the semiarid Loess Plateau region of China during a relatively dry summer season using both the recently recommended instantaneous measurement and the traditional method with rehydration pretreatment. Generally, P–V-derived parameters in this study reflected conditions in a dry growth environment. Species-specific differences were also found among P–V parameters, suggesting each species uses different mechanisms to respond to drought. Based on the results from instantaneous measurements, a descending sequence for drought tolerance ranked by water potentials at the turgor loss point (Ψtlp) was Rosa hugonis > Syringa oblata = Armeniaca sibirica > Caragana microphylla > Pyrus betulaefolia > Acer stenolobum > Quercus liaotungensis > Robinia pseudoacacia. The first five species also showed lower levels of osmotic potential at full turgor (Ψ π sat ) and higher symplastic osmotic solute content per dry weight, suggesting they possess advantages in osmotic adjustment. Also, this study supports previous reports noting rehydration pretreatment resulted in shifts in P–V parameters. The magnitude of the shifts varied with species and water conditions. The effect of rehydration was stronger for species with higher drought tolerance or subjected to the influence of drought. Differences in the parameters among species were mitigated as a result of rehydration. Those with a lower Ψtlp or midday water potential were more deeply affected by rehydration. Application of instantaneous measurements was strongly recommended for proper analysis of P–V curves particularly in arid and semiarid areas.  相似文献   

12.
Summary CO2- and H2O-gas exchange of 20- to 25-year-old spruce trees from a plantation in the Hunsrück mountains were investigated over a period of 3 years. All measurements were made as pair comparisons, i.e., in each case the gas exchange of a damaged tree and of a relatively healthy tree in its immediate vicinity was measured simultaneously. A second plantation in the Westerwald mountains consisted of 18-year-old apparently healthy spruce trees. Pair comparison at this location meant comparison of two healthylooking trees. The investigations at both locations included diurnal course measurements of photosynthesis and transpiration, and light saturation curves and CO2-saturation curves of photosynthesis. The reduced photosynthesis parameters of the phenotypically damaged trees at the Hunsrück location indicates massive damage to the photosynthetic apparatus. Measurements of H2O-gas exchange showed that there are disturbances in stomatal regulation of the needles of damaged trees. As a result, the water use efficiency of these needles proved to be significantly lower. In addition, apparent photorespiration of the damaged trees was decreased, whereas their light- and CO2-compensation points and their dark respiration were increased. In contrast to the Hunsrück plantation, no such effects were detectable when the healthy-looking Westerwald trees were subjected to pair comparison of gas exchange. Reduced photosynthetic capacity and disturbances of the stomatal regulation of the phenotypically damaged Hunsrück trees may be due to damage in the cellular membranes. Furthermore, a comparison of three growing seasons led to the conclusion that the gas exchange of spruce trees in their natural habitat is markedly influenced by climatic conditions.  相似文献   

13.
It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (gs), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations.  相似文献   

14.
The water potential at turgor loss point (Ψtlp) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp. We evaluated 17 species from seasonally dry habitats, representing a range of life‐forms, under well‐watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre‐dawn water potential at stomatal closure: Ψgs0) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well‐watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp, Ψgs0 was better related to drought strategy (ΔΨMD). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD. While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.  相似文献   

15.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

16.
Summary Andropogon glomeratus is a C4 nonhalophytic grass which exhibits population differentiation for tolerance to short-term salinity exposure. To investigate possible physiological mechanisms whch enable salt-tolerant individuals to survive short-term inundation, gas exchange and water relations parameters were measured before and during a 5-day watering treatment of half-strength synthetic seawater in plants from a tolerant and a non-tolerant population. Photosynthetic recovery was followed for 10 days after the salinity treatment. Photosynthetic CO2 uptake was substantially inhibited in both populations. Stomatal conductances decreased and intercellular CO2 concentrations increased, indicating non-stomatal factors were primarily responsible for the decrease in CO2 uptake. After termination of the salinity treatment photosynthetic capacity increased more rapidly in the tolerant population and reached the pretreatment level after 6 days, whereas the nontolerant population did not recover fully after 10 days. A-Ci curves measured before and after the salinity treatment indicated a decrease in the carboxylation efficiency, and suggested a proportionately greater metabolic inhibition relative to the increase in the stomatal limitation. Osmotic adjustment occurred in a 2-day period in the tolerant population, but there was no change in the osmotic potentials or the water potential at the point of turgor loss in the nontolerant population. Thus short-term salt tolerance in the marsh population is associated with rapid osmotic adjustment and recovcry of photosynthetic capacity shortly after the end of the salinity exposure, rather than maintenance of greater photosynthesis during the salinity treatment.  相似文献   

17.

Osmotic stress negatively affects the photosynthetic efficiency and cause a significant loss of crop productivity. Salicornia brachiata (Roxb.) is a eu-halophyte. We hereby report on photosynthetic gas exchange and chlorophyll fluorescence in S. brachiata under sodium chloride (NaCl), seawater and polyethylene glycol (PEG) induced osmotic stress. It grows luxuriantly and exhibited a higher tolerance index and better accumulation of organic solutes under 100% strength of seawater (32.5 ppt) and 0.5 M NaCl salinity. It exhibited comparatively better gas exchange, stomatal conductance, PSII photochemistry and electron transfer under 100% strength of seawater salinity. Higher chlorophyll a/b ratio under stress conditions indicated a lower ratio of PSII to PSI and balanced excitation of PSI and PSII in S. brachiata resulting in efficient photosynthetic processes. The lower total chlorophyll/carotenoids ratio and higher non-photochemical quenching indicated the photo-protection and safer dissipation of heat energy in S. brachiata under stress. The 100% strength of seawater and 0.5 M NaCl salinity in S. brachiata did not cause significant changes in antenna size, connectivity between PSII reaction centres (RCs) and reduction of electrons on PSII donor side. The 20% PEG induced the inactivation of RCs and cause damage to PSII RCs in S. brachiata thus reduced the electron transfer from QA to QB pool-sized and activity of water-splitting complex. Higher φ(P0) and FV/FM in S. brachiata under seawater salinity indicated a comparatively better quantum yield of primary photochemistry. The higher PITotal in S. brachiata under 100% strength of seawater and 0.5 M NaCl stress indicated a better energy flux reaching to PSII RCs, electron transport and performance of RCs. The higher strengths of osmotic stress cause reduction in the quantum yield of PSII electron transport and capturing efficiency of excitation energy by open PSII RCs in S. brachiata.

Graphic Abstract
  相似文献   

18.
The effects of low and moderate salinity (100 and 200 mM NaCl, respectively) and iso-osmotic stress generated by polyethylene glycol PEG (1) (–0.3 MPa) and PEG (2) (–0.6 MPa) on maximum quantum yield of photosystem II (PSII), growth, photosynthesis, transpiration, dark respiration, water use efficiency (WUE), water content, chlorophyll, proline, Na+ and K+ concentrations were investigated in shoots of two ecotypes С3–С4 xero-halophyte Bassia sedoides (Pall.) Aschers. Plants were grown from seeds of two Southern Urals populations (Makan and Podolsk) differing in their bioproductivity. Aboveground biomass of the Makan plants was approximately 10-fold higher than that of the Podolsk ecotype. The plants of both ecotypes were sensitive to water deficit. They showed similar decrease in biomass, water content, net photosynthesis and transpiration intensity under both low and moderate osmotic stress (PEG). However, the content of сhlorophyll and free proline in shoots of the Podolsk plants increased under moderate osmotic stress (PEG(2)). Under salinity the differences between transpiration, Fv/Fm, WUE, water content, chlorophyll and proline concentrations in shoots of two ecotypes were no found. But, the Podolsk plants showed decrease in the growth parameters (1.5-fold), increase in the dark respiration intensity (2-fold) and the Na+/K+ ratio (1.2-fold) under moderate salinity (200 mM NaCl). Thus, the reduction of bioproductivity of the Podolsk ecotype under salinity was the result of ionic rather than osmotic factor of salinity. In the Podolsk plants the additional transpiration costs and consumption of assimilates (correspondingly) increased with the toxic sodium ion accumulation under salinity. This led to decrease in the growth parameters. Thus, two B. sedoides ecotypes have different adaptive strategies of tolerance to the ionic factor of salt stress at the level of the physiological processes associated with the dark CO2 gas exchange. Moreover, in less tolerant and productive Podolsk ecotype the increase in proline content in shoots characterized comparatively low adaptation to osmotic factor, and the increase in dark respiration and the Na+/K+ ratio pointed to relatively low resistance to ion factor of salinity as compared with the Makan ecotype.  相似文献   

19.
Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co‐occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity.  相似文献   

20.
Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well‐watered or drought conditions to minimum temperatures ranging from ?8 to ?24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf‐specific xylem hydraulic conductance (kl). Drought‐exposed plants exhibited smaller decreases in gas exchange after exposure to ?8 °C compared to well‐watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole‐plant function following exposure to ?15 °C; drought‐exposed plants exhibited less cell death, greater leaf retention, higher kl and higher rates of gas exchange than well‐watered plants. Both drought‐exposed and well‐watered plants experienced 100% mortality following exposure to ?24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号