首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The past 30 years has seen a remarkable development in our understanding of how the auditory system--particularly the peripheral system--processes complex sounds. Perhaps the most significant has been our understanding of the mechanisms underlying auditory frequency selectivity and their importance for normal and impaired auditory processing. Physiologically vulnerable cochlear filtering can account for many aspects of our normal and impaired psychophysical frequency selectivity with important consequences for the perception of complex sounds. For normal hearing, remarkable mechanisms in the organ of Corti, involving enhancement of mechanical tuning (in mammals probably by feedback of electro-mechanically generated energy from the hair cells), produce exquisite tuning, reflected in the tuning properties of cochlear nerve fibres. Recent comparisons of physiological (cochlear nerve) and psychophysical frequency selectivity in the same species indicate that the ear's overall frequency selectivity can be accounted for by this cochlear filtering, at least in bandwidth terms. Because this cochlear filtering is physiologically vulnerable, it deteriorates in deleterious conditions of the cochlea--hypoxia, disease, drugs, noise overexposure, mechanical disturbance--and is reflected in impaired psychophysical frequency selectivity. This is a fundamental feature of sensorineural hearing loss of cochlear origin, and is of diagnostic value. This cochlear filtering, particularly as reflected in the temporal patterns of cochlear fibres to complex sounds, is remarkably robust over a wide range of stimulus levels. Furthermore, cochlear filtering properties are a prime determinant of the 'place' and 'time' coding of frequency at the cochlear nerve level, both of which appear to be involved in pitch perception. The problem of how the place and time coding of complex sounds is effected over the ear's remarkably wide dynamic range is briefly addressed. In the auditory brainstem, particularly the dorsal cochlear nucleus, are inhibitory mechanisms responsible for enhancing the spectral and temporal contrasts in complex sounds. These mechanisms are now being dissected neuropharmacologically. At the cortical level, mechanisms are evident that are capable of abstracting biologically relevant features of complex sounds. Fundamental studies of how the auditory system encodes and processes complex sounds are vital to promising recent applications in the diagnosis and rehabilitation of the hearing impaired.  相似文献   

2.
This paper presents a new module for heart sounds segmentation based on S-transform. The heart sounds segmentation process segments the PhonoCardioGram (PCG) signal into four parts: S1 (first heart sound), systole, S2 (second heart sound) and diastole. It can be considered one of the most important phases in the auto-analysis of PCG signals. The proposed segmentation module can be divided into three main blocks: localization of heart sounds, boundaries detection of the localized heart sounds and classification block to distinguish between S1 and S2. An original localization method of heart sounds are proposed in this study. The method named SSE calculates the Shannon energy of the local spectrum calculated by the S-transform for each sample of the heart sound signal. The second block contains a novel approach for the boundaries detection of S1 and S2. The energy concentrations of the S-transform of localized sounds are optimized by using a window width optimization algorithm. Then the SSE envelope is recalculated and a local adaptive threshold is applied to refine the estimated boundaries. To distinguish between S1 and S2, a feature extraction method based on the singular value decomposition (SVD) of the S-matrix is applied in this study. The proposed segmentation module is evaluated at each block according to a database of 80 sounds, including 40 sounds with cardiac pathologies.  相似文献   

3.
Frequency analysis of heart sounds has been gaining recognition as a possible indicator of several heart and valve diseases, although a comprehensive study of normal heart sounds has not been published. Relating the frequency content of normal heart sounds to certain physical characteristics surrounding the generation of these sounds could lead to a valuable diagnostic tool and give a better understanding of the mechanism of heart sounds production. In this study, the first and second heart sounds from seventy-four normal, and seven hypertensive volunteers were recorded, digitized and analysed using a Fast Fourier Transform algorithm. Statistical analysis was used to relate physical characteristicss (sex, blood pressure, and body surface area) of the subjects to the frequency content of normal heart sounds and to compare normal and hypertensive heart sounds. Statistical analysis showed that the major concentration of energy, for both first heart sound (S1) and second heart sound (S2), is below 150 Hertz (Hz) which may indicate that both sounds are caused by vibrations within the same structure, possibly the entire heart. However S2 spectra have greater amplitude than S1 spectra above 150 Hz, which may be due to vibrations within the aorta and pulmonary artery. Relationships observed between body surface area, sex, blood pressure, and the frequency content of heart sounds indicate that as heart size increases, the amplitude of the frequency coefficients above 150 Hz decreases. These observations were more identifiable in the S1 spectra than in the S2 spectra, possibly because the S2 higher frequency components may mask subtle changes in the S2 spectra caused by heart size changes. However, when the changes in heart size are significant, as in hypertension or increased body surface area, trends in the S2 spectra can be observed.  相似文献   

4.
In this article, the spectral features of first heart sounds (S1) and second heart sounds (S2), which comprise the mechanical heart valve sounds obtained after aortic valve replacement (AVR) and mitral valve replacement (MVR), are compared to find out the effect of mechanical heart valve replacement and recording area on S1 and S2. For this aim, the Welch method and the autoregressive (AR) method are applied on the S1 and S2 taken from 66 recordings of 8 patients with AVR and 98 recordings from 11 patients with MVR, thereby yielding power spectrum of the heart sounds. Three features relating to frequency of heart sounds and three features relating to energy of heart sounds are obtained. Results show that in comparison to natural heart valves, mechanical heart valves contain higher frequency components and energy, and energy and frequency components do not show common behaviour for either AVR or MVR depending on the recording areas. Aside from the frequency content and energy of the sound generated by mechanical heart valves being affected by the structure of the lungs–thorax and the recording areas, the pressure across the valve incurred during AVR or MVR is a significant factor in determining the frequency and energy levels of the valve sound produced. Though studies on native heart sounds as a non-invasive diagnostic method has been done for many years, it is observed that studies on mechanical heart valves sounds are limited. The results of this paper will contribute to other studies on using a non-invasive method for assessing the mechanical heart valve sounds.  相似文献   

5.
The heart sound signal is first separated into cycles, where the cycle detection is based on an instantaneous cycle frequency. The heart sound data of one cardiac cycle can be decomposed into a number of atoms characterized by timing delay, frequency, amplitude, time width and phase. To segment heart sounds, we made a hypothesis that the atoms of a heart sound congregate as a cluster in time–frequency domains. We propose an atom density function to indicate clusters. To suppress clusters of murmurs and noise, weighted density function by atom energy is further proposed to improve the segmentation of heart sounds. Therefore, heart sounds are indicated by the hybrid analysis of clustering and medical knowledge. The segmentation scheme is automatic and no reference signal is needed. Twenty-six subjects, including 3 normal and 23 abnormal subjects, were tested for heart sound signals in various clinical cases. Our statistics show that the segmentation was successful for signals collected from normal subjects and patients with moderate murmurs.  相似文献   

6.
7.
Listeners consistently perceive approaching sounds to be closer than they actually are and perceptually underestimate the time to arrival of looming sound sources. In a natural environment, this underestimation results in more time than expected to evade or engage the source and affords a “margin of safety” that may provide a selective advantage. However, a key component in the proposed evolutionary origins of the perceptual bias is the appropriate timing of anticipatory motor behaviors. Here we show that listeners with poorer physical fitness respond sooner to looming sounds and with a larger margin of safety than listeners with better physical fitness. The anticipatory perceptual bias for looming sounds is negatively correlated with physical strength and positively correlated with recovery heart rate (a measure of aerobic fitness). The results suggest that the auditory perception of looming sounds may be modulated by the response capacity of the motor system.  相似文献   

8.
The purpose of introducing sounds is to afford a comfortable acoustic environment and to design good soundscapes. This study aims at rating the preference of subjects for the introduced sounds suitable to the public spaces and also investigates the methodology to select the sounds by subjective and objective procedures. Seventeen kinds of the introduced sounds were evaluated with nine adjectives in the presence of visual location information. Also, adequate sound levels were calculated by adjusting the volume of introduced sounds in the presence of the actual background sounds of locations and visual information. The concept of harmony with the surroundings was reviewed by analyzing the correlation among 9 adjectives which express introduced sounds. And the effectiveness of existed sound quality index was analyzed so as to select the introduced sounds quantitatively. By the evaluation of the adequate level of the introduced sounds, it is proposed that the lower introduced sound level would be better for the noisy circumstances.  相似文献   

9.
10.
The predominating energy in the normal heart sounds has been found to be at frequencies below the normal hearing threshold. Because it was felt that significant clinical information was likely to be present at those frequencies, an instrument was designed and fabricated which would frequency shift the entire heart sound into the middle of the auditory frequency range. Clinical testing showed that changes were readily detected in a monitoring situation, and that use of the instrument was both simple and easy to learn.  相似文献   

11.
A new model which is capable of generating realistic synthetic phonocardiogram (PCG) signals is introduced based on three coupled ordinary differential equations. The new PCG model takes into account the respiratory frequency, the heart rate variability and the time splitting of first and second heart sounds. This time splitting occurs with each cardiac cycle and varies with inhalation and exhalation. Clinical PCG statistics and the close temporal relationship between events in ECG and PCG are used to deduce values of PCG model parameters.In comparison with published PCG models, the proposed model allows a larger number of known PCG features to be taken into consideration. Moreover it is able to generate both normal and abnormal realistic synthetic heart sounds. Results show that these synthetic PCG signals have the closest features to those of a conventional heart sound in both time and frequency domains. Additionally, a sound quality test carried out by eight cardiologists demonstrates that the proposed model outperforms the existing models.This new PCG model is promising and useful in assessing signal processing techniques which are developed to help clinical diagnosis based on PCG.  相似文献   

12.
The spectral content of normal tracheal and chest wall breath sounds has been calculated using the fast Fourier transform (FFT) (J. Appl. Physiol. 50: 307-314, 1981). Parameter estimation methods, in particular autoregressive (AR) modeling, are alternative techniques for measuring lung sounds. The outcome of AR modeling of 38 complete breaths picked up simultaneously over the chest walls and tracheae of five normal males was evaluated. The sounds were treated as noise, bounded by a quasi-periodic envelope generated by the cyclic action of breathing, thus causing the sounds to become inherently nonstationary. Normalization of the sounds to their corresponding variance envelopes eliminated the nonstationarity, an important requirement for most signal-processing methods. Subsequently, the AR model order was sought using formal criteria. Orders 6-8 were found to be suitable for normal chest wall sounds, whereas tracheal sounds required at least orders 12-16. Using orders 6 and 12, we compared the prominent spectral features of chest wall and tracheal sounds calculated by AR with those found in the spectra calculated by FFT. The polar representation of the AR roots, calculated from the AR coefficients, showed that normal lung sounds from a group of individuals are characterized by a low variability, suggesting that this method may provide an alternative representation of the sounds. The data presented here show that normal lung sounds, when measured in the frequency domain by either FFT or AR modeling, have a characteristic pattern that is independent of the analysis method.  相似文献   

13.
Sounds in the natural environment are non-stationary, in that their spectral dynamics is time-dependent. We develop measures to analyze the spectral dynamics of environmental sound signals and find that they fall into two categories—simple sounds with slowly varying spectral dynamics and complex sounds with rapidly varying spectral dynamics. Based on our results and those from auditory processing we suggest rate of spectral dynamics as a possible scheme to categorize sound signals in the environment.  相似文献   

14.
The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings.  相似文献   

15.
Vocalizations have been elucidated in previous songbird studies, whereas less attention has been paid to non-vocal sounds. In the blue-capped cordon-bleu (Uraeginthus cyanocephalus), both sexes perform courtship displays that are accompanied by singing and distinct body movements (i.e. dance). Our previous study revealed that their courtship bobbing includes multiple rapid steps. This behaviour is quite similar to human tap dancing, because it can function as both visual and acoustic signals. To examine the acoustic signal value of such steps, we tested if their high-speed step movements produce non-vocal sounds that have amplitudes similar to vocal sounds. We found that step behaviour affected step sound amplitude. Additionally, the dancing step sounds were substantially louder than feet movement sounds in a non-courtship context, and the amplitude range overlapped with that of song notes. These results support the idea that in addition to song cordon-bleus produce acoustic signals with their feet.  相似文献   

16.
Listening to speech in the presence of other sounds   总被引:1,自引:0,他引:1  
Although most research on the perception of speech has been conducted with speech presented without any competing sounds, we almost always listen to speech against a background of other sounds which we are adept at ignoring. Nevertheless, such additional irrelevant sounds can cause severe problems for speech recognition algorithms and for the hard of hearing as well as posing a challenge to theories of speech perception. A variety of different problems are created by the presence of additional sound sources: detection of features that are partially masked, allocation of detected features to the appropriate sound sources and recognition of sounds on the basis of partial information. The separation of sounds is arousing substantial attention in psychoacoustics and in computer science. An effective solution to the problem of separating sounds would have important practical applications.  相似文献   

17.
A specific display observed during agonistic behavior among captive Atlantic bottlenosed dolphins (Tursiops truncatus) was examined. The primary component of the display was an open-mouthed posture accompanied by violent vertical head motions and the emission of pulse-type vocalizations. Jaw-clap behavior produced during the display was quantified for use as an index of aggressive motivation. By aurally monitoring the animals' vocalizations it was found that the level of aggressive response between the participants of the interactions increased with the production and subsequent duration of burst-pulse sounds. The possibility of burstpulse sounds resulting in auditory or tactile discomfort when directed toward conspecifics is discussed.  相似文献   

18.
Anatomical correlates of learning novel speech sounds   总被引:11,自引:0,他引:11  
Golestani N  Paus T  Zatorre RJ 《Neuron》2002,35(5):997-1010
We examined the relationship between brain anatomy and the ability to learn nonnative speech sounds, as well as rapidly changing and steady-state nonlinguistic sounds, using voxel-based morphometry in 59 healthy adults. Faster phonetic learners appeared to have more white matter in parietal regions, especially in the left hemisphere. The pattern of results was similar for the rapidly changing but not for the steady-state nonlinguistic stimuli, suggesting that morphological correlates of phonetic learning are related to the ability to process rapid temporal variation. Greater asymmetry in the amount of white matter in faster learners may be related to greater myelination allowing more efficient neural processing, which is critical for the ability to process certain speech sounds.  相似文献   

19.
20.
In this paper we have developed a fuzzy expert system (FES) for different sounds produced by different organs in the human body. We have also constructed a unique electronic stethoscope. The human body sounds produced by different organs like heart, lungs and intestine were analyzed. The doctor provided the data and relation between variables chosen for each organ sound. Using this information a rule base for fuzzy expert system was built. Such FES helps the medical doctor in arriving at appropriate decision in different difficult clinical situations. The examination of body sounds was done using conventional stethoscope (CS) and electronic stethoscope (ES), which was uniquely designed for this study. We have found that unique stethoscope developed by us is far superior to conventional stethoscope by its overall performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号