首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimental abrasion of forming bone surfaces was conducted so that such surfaces could be characterized. This is particularly important to bone remodeling studies utilizing scanning electron microscope (SEM) imaging of archeological material. Forming surfaces derived from subadult macaque cranial bone were treated by particle abrasion, water abrasion, sliding abrasion, brushing, manual rubbing, weight, exfoliation, chipping and replication. Acetic acid treatments were also performed. The effects of abrasive agents are specific but generally fall into rough (particle and water abrasion) and smooth (sliding abrasion, brushing, rubbing and weight) categories. Protohistoric human and Plio-Pleistocene hominid subadult craniofacial remains were observed with the SEM for comparison with experimental data. The more recent material appeared smooth, probably as a result of specimen preparation procedures using brushes. Surfaces were still interpretable as forming, however, using a more abrasion-resistant feature called intervascular ridging (IVR) described in this study. The IVR pattern is also recognized on the hominid sample, confirming the possibility of performing remodeling studies on abraded fossil material. The abrasion characteristics are somewhat more difficult to classify, however. Abrasion is defined and discussed relative to remodeling studies and taphonomy. The usefulness of the experimental data reported here, however, in paleoenvironmental reconstruction, has yet to be fully realized. Acid and mechanical preparation techniques are briefly addressed. It is concluded that it is possible to characterize a forming surface as abraded according to the findings of this study and that acid, if handled with care, will more likely preserve microanatomical surface detail. It would also be in everyone's interest to employ a less abrasive cleaning regime on archeological specimens.  相似文献   

2.
Laboratory rats are small animal models which are often used for scientific investigations in medicine. So far there are only few scientific data about the meaning of these small animal models for in vivo bone healing studies available in literature. Although the rat's femur with its cyclic loadings during gait is an appropriate model for investigations in the field of experimental orthopaedics and traumatology there is a lack of morphometric information with respect to its anatomy. The aim of this study is to evaluate the anatomy of rat femurs in two species, which are often performed in animal experimental medicine. These morphometric data should contribute to develope an appropriated osseous fragment fixation system in the rat's femur. The femurs of Wistar (WR) and Sprague Dawley (SDR) cadavers were prepared and analysed by x-rays in two standard planes. The results were compared with the corresponding data for humans by literature. It could be demonstrated that SDR showed a higher caput-collum-diaphyseal and antetorsion angle, but a lower transcondylar femur valgus angle compared to WR. Cortical thickness, bone marrow cavity diameter and femur length were higher in WR. Wistar rat's femur anatomy shows more similarities to human anatomy than Sprague Dawley rats.  相似文献   

3.
Jang IG  Kim IY 《Journal of biomechanics》2008,41(11):2353-2361
In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.  相似文献   

4.
Finite element analysis is a powerful tool for predicting the mechanical behaviour of complex biological structures like bones, but to be confident in the results of an analysis, the model should be validated against experimental data. In such validation experiments, the strains in the loaded bones are usually measured with strain gauges glued to the bone surface, but the use of strain gauges on bone can be difficult and provides only very limited data regarding surface strain distributions. This study applies the full-field strain measurement technique of digital speckle pattern interferometry to measure strains in a loaded human mandible and compares the results with the predictions of voxel-based finite element models of the same specimen. It is found that this novel strain measurement technique yields consistent, reliable measurements. Further, strains predicted by the finite element analysis correspond well with the experimental data. These results not only confirm the usefulness of this technique for future validation studies in the field of bone mechanics, but also show that the modelling approach used in this study is able to predict the experimental results very accurately.  相似文献   

5.
Laboratory mice provide a versatile experimental model for studies of skeletal biomechanics. In order to determine the strength of the mouse skeleton, mechanical testing has been performed on a variety of bones using several procedures. Because of differences in testing methods, the data from previous studies are not comparable. The purpose of this study was to determine which long bone provides the values closest to the published material properties of bone, while also providing reliable and reproducible results. To do this, the femur, humerus, third metatarsal, radius, and tibia of both the low bone mass C57BL/6H (B6) and high bone mass C3H/HeJ (C3H) mice were mechanically tested under three-point bending. The biomechanical tests showed significant differences between the bones and between mouse strains for the five bones tested (p < 0.05). Computational models of the femur, metatarsal, and radius were developed to visualize the types of measurement error inherent in the three-point bending tests. The models demonstrated that measurement error arose from local deformation at the loading point, shear deformation and ring-type deformation of the cylindrical cross-section. Increasing the aspect ratio (bone length/width) improved the measurement of Young's modulus of the bone for both mouse strains (p < 0.01). Bones with the highest aspect ratio and largest cortical thickness to radius ratio were better for bending tests since less measurement error was observed in the computational models. Of the bones tested, the radius was preferred for mechanical testing because of its high aspect ratio, minimal measurement error, and low variability.  相似文献   

6.
During secondary bone healing, different tissue types are formed within the fracture callus depending on the local mechanical and biological environment. Our aim was to understand the temporal succession of these tissue patterns for a normal bone healing progression by means of a basic mechanobiological model. The experimental data stemmed from an extensive, previously published animal experiment on sheep with a 3?mm tibial osteotomy. Using recent experimental data, the development of the hard callus was modelled as a porous material with increasing stiffness and decreasing porosity. A basic phenomenological model was employed with a small number of simulation parameters, which allowed comprehensive parameter studies. The model distinguished between the formation of new bone via endochondral and intramembranous ossification. To evaluate the outcome of the computer simulations, the tissue images of the simulations were compared with experimentally derived tissue images for a normal healing progression in sheep. Parameter studies of the threshold values for the regulation of tissue formation were performed, and the source of the biological stimulation (comprising e.g. stem cells) was varied. It was found that the formation of the hard callus could be reproduced in silico for a wide range of threshold values. However, the bridging of the fracture gap by cartilage on the periosteal side was observed only (i) for a rather specific choice of the threshold values for tissue differentiation and (ii) when assuming a strong source of biological stimulation at the periosteum.  相似文献   

7.
Good mechanical fixation of an implant to the surrounding bone is important for its longevity, and is influenced by both biological and mechanical factors. This study parametrically evaluates the mechanics of the interface with a computationally efficient analytic structural model of the shear stress field and global shear stiffness of an axially loaded implant. The utility of the analytic model was first established by validating its assumptions with a case-specific finite element model. We then used the analytic model for a sensitivity analysis of the relationship between the pattern of tissue growth and shear properties of the interface for our previously reported loaded in vivo experimental micromotion device. The bone located directly at the implant surface was found to be the most effective site for increasing interface stiffness. This suggests that the implant surface is the most desirable site for bone growth, yet is also the most mechanically challenging environment due to its maximal shear stresses. Thus, these findings support the further investigation of osteo-conductive coatings and other biological stimuli to overcome the challenging mechanics, and to promote bone growth directly at the implant surface. The model also demonstrated that the mechanical contribution to the global implant shear stiffness of a commonly observed isolated sclerotic bone rim is very limited. The results of this sensitivity analysis agree with experimental studies with the micromotion device, and with clinical studies reporting good results with osteo-conductive coatings.  相似文献   

8.
Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE) models. This yielded values for Young’s moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and compare new in vivo findings to previously performed studies with differing mechanical parameters.  相似文献   

9.
The aim of the study reported here was to provide some basic and general information on the suitability of an experimental sheep model for conducting in vivo orthopedic studies. The authors have classified the fundamental aspects that should be carefully evaluated when using sheep as an experimental model in orthopedic research: factors strictly related to bone anatomy and formation; and factors strictly affecting bone physiology, such as gastrointestinal mineral and vitamin absorption, and reproductive cycle. Future investigations should address all of the aspects highlighted, since there is no animal with the same anatomic, biochemical, physiologic, and biological characteristics as those of human beings. Moreover, useful data for treating orthopedic patients are based not only on good planning and study design, but also on perfect knowledge of the animal used and the differences between the model and the human being. The authors hope that this report will contribute to extrapolation of reliable data for use of sheep in the orthopedics field.  相似文献   

10.
Comparisons of torsional strength are made on the ulnae from the forelegs of short haired hounds where a nonvascularized graft was performed on one leg and a vascularized graft performed on the other. By using the forelegs of a dog as the experimental model and microsurgical techniques, a vascularized bone segment was used to graft a five centimeter nonunion in one leg and at the same time a conventional bone graft was performed on a similar nonunion in the other leg. Similar segments of rib bone were used for each graft. Torsional strength data are shown for nine experimental animals. A successful method for mounting the bones for testing of torsional strength in a torsion machine is given. In each case for which the bones healed properly, the vascularized bone graft proved to be significantly stronger in torsion.  相似文献   

11.
Lipoprotein tracer kinetics studies have for many years provided new and important knowledge of the metabolism of lipoproteins. Our understanding of kinetics defects in lipoprotein metabolism has resulted from the use of tracer kinetics studies and mathematical modeling. This review discusses all aspects of the performance of kinetics studies, including the development of hypotheses, experimental design, statistical considerations, tracer administration and sampling schedule, and the development of compartmental models for the interpretation of tracer data. In addition to providing insight into new metabolic pathways, such models provide quantitative information on the effect of interventions on lipoprotein metabolism. Compartment models are useful tools to describe experimental data but can also be used to aid in experimental design and hypothesis generation. The SAAM II program provides an easy-to-use interface with which to develop and test compartmental models against experimental models. The development of a model requires that certain checks be performed to ensure that the model describes the experimental data and that the model parameters can be estimated with precision. In addition to methodologic aspects, several compartment models of apoprotein and lipid metabolism are reviewed.  相似文献   

12.
Mineral and matrix contributions to rigidity in fracture healing   总被引:6,自引:0,他引:6  
The purpose of this study was to investigate the relationships among selected properties of fracture callus: bending rigidity, tissue density, mineral density, matrix density and mineral-to-matrix ratio. The experimental model was an osteotomized canine radius in which the development of the fracture callus was modified by electrical stimulation with various levels of direct current. This resulted in a range of values for the selected properties of the callus, determined post mortem at 7 weeks after osteotomy. We found that the rigidity (R) of the bone-callus combination obeyed relationships of the form R = axb, where x is the tissue density, mineral density, matrix density or the mineral-to-matrix ratio of the repair tissue. These are analogous to power-law relationships found in studies of compact and cancellous bone. The results suggest that fracture callus at 7 weeks after osteotomy in canine radius behaves more like immature compact bone than cancellous bone in its mechanical and physicochemical properties. The present study demonstrates the feasibility of developing non-invasive in vivo densitometric methods to monitor fracture healing, since models may be developed that can predict mechanical properties from densitometric data. Further studies are needed to develop a refined model based on experimental data on the mechanical and physicochemical properties and microstructure of fracture callus at different stages of healing.  相似文献   

13.
Vertebral bodies of teleost fish are formed by the sclerotomal bone covering the chordacentrum. The internal part of the sclerotomal bone is composed of an amphicoelous hourglass shaped autocentrum, which is common in most fish species. In contrast, the external shape of the sclerotomal bone varies extensively among species. There are multiple hypotheses regarding the composition and formation of the external structure. However, as they are based on studies of few extant or extinct species, their applicability to other species remains to be clarified. To understand the morphology, formation, and composition of vertebral bodies in teleosts, we performed a comparative analysis using micro-CT scans of 32 species from 10 orders of Teleostei and investigated the detailed morphology of the sclerotomal bone, especially its plate-like ridge and trabeculae. We discovered two structural characteristics that are shared among most of the examined species. One was the sheet-like trabeculae that extend radially from the center of the vertebral body with a constant thickness. The other was the presence of hollow spaces on the internal parts of the lateral ridge and trabeculae. The combination of different arrangements of sheet-like trabeculae and internal hollow spaces formed different shapes of the lateral structure of the vertebral body. The properties of these two characteristics suggest that the external part of the sclerotomal bone grows outward by deposition at the bone tip, and that, concurrently, bone absorption occurs in the internal part of the sclerotomal bone. The vertebral arches were also formed by the sheet-like trabeculae, indicating that both, the vertebral body and the arches, are formed by the same component. The micro-CT scanning data were uploaded to a public database so they can be used for future studies on fish vertebrae.  相似文献   

14.
Due to the shallowness of the glenohumeral joint, a challenging but essential requirement of a glenohumeral prosthesis is the prevention of joint dislocation. Weak glenoid bone stock and frequent dysfunction of the rotator cuff, both of which are common with rheumatoid arthritis, make it particularly difficult to achieve this design goal. Although a variety of prosthetic designs are commercially available only a few experimental studies have investigated the kinematics and dislocation characteristics of design variations. Analytical or numerical methods, which are predictive and more cost-effective, are, apart from simple rigid-body analyses, non-existent. The current investigation presents the results of a finite element analysis of the kinematics of a total shoulder joint validated using recently published experimental data for the same prostheses. The finite element model determined the loading required to dislocate the humeral head, and the corresponding translations, to within 4% of the experimental data. The finite element method compared dramatically better to the experimental data (mean difference=2.9%) than did rigid-body predictions (mean difference=37%). The goal of this study was to develop an accurate method that in future studies can be used for further investigations of the effect of design parameters on dislocation, particularly in the case of a dysfunctional rotator cuff. Inherently, the method also evaluates the glenoid fixation stresses in the relatively weak glenoid bone stock. Hence, design characteristics can be simultaneously optimised against dislocation as well as glenoid loosening.  相似文献   

15.
Due to its significance in tooth movement, the stress/deformation field of periodontium and the alveolar bone remodeling process, periodontal ligament (PDL) cannot be excluded from the studies investigating dental biomechanics regarding its excessive deformability. Therefore, many analytical and numerical researches are carried out to simulate its response and to create a constitutive model via experiments intending to discover the material properties of PDL. The aim of this study is to formulate a user specified contact model that can be used in conjunction with finite element (FE) software and reflects PDL’s influence on neighboring structures based on the currently available information, without requiring an actual volumetric finite element mesh of ligament. The results show good agreement with available experimental tooth mobility data. Smooth stress fields are obtained on the tooth root and alveolar bone, which is a significant aspect in bone-remodeling studies. The advantage of simulating PDL as a contact model at the interface of tooth root and the alveolar process instead of a solid-meshed FE model with poor geometric morphology and/or very dense mesh is expected to save pre/post-processing workforce, to increase the accuracy and to contribute to the smoothness of interface stress distributions.  相似文献   

16.
An investigation was performed to determine the effects of the presence of two lengths of proximal Müller prosthesis on predicted failure loads, as compared to those for an intact femur. Three-dimensional stresses in a bone/cement/prosthesis system were determined using finite element methods, with both isotropic and transversely isotropic material properties used for the diaphyseal cortex. Significant increases in prosthesis stem stresses were found when the transversely isotropic material properties were employed in the diaphyseal cortex. This leads to the conclusion that accurate anisotropic material properties for bone are essential for precise stress determination and optimum design in prosthetic implants. Failure loads were also predicted for vertical compression and axial torque, similar to available experimental conditions, and were within the range of the experimental failure data found in the literature. The technique developed herein can be used to systematically assess existing as well as future implant designs, taking into account the complex three-dimensional interaction effects of the overall bone/cement/prosthesis system.  相似文献   

17.
Angular dependent Young's modulus E phi presented by Bonfield and Grynpas [Nature 270, 453-454 (1977)] was simulated by using the distribution function of the orientation of mineral in plexiform bone introduced on the basis of an X-ray pole figure analysis (XPFA) and a small angle X-ray scattering (SAXS) results. Calculations were performed with the aid of a simple model which expresses well the geometrical characteristic of plexiform bone. Estimated angular dependent Young's modulus in terms of the distribution of mineral orientation reproduced the experimental results. The suitable aspect ratio of bone mineral for the reproduction of the empirical data was a reasonable value compared with the morphological study of bone mineral. It is concluded that the angular dependence of mechanical properties of plexiform bone is explained by the distribution of bone mineral orientation and its morphology.  相似文献   

18.
The influence of pregnancy on bone tissue metabolism is not completely understood. Caffeine also has a potentially negative influence on bones. The aim of this study was the evaluation of changes in the bones of pregnant rats under the influence of caffeine. The experiment was carried out on Wistar rats. The evaluation of rats' bone tissue quality was performed based on bone density measurements and resistance examinations. It analyzed the impact of caffeine on the degree of bone tissue mineralization and the composition of the bones. The mean value of pelvises 'wet' and 'dry' densities in a group of pregnant rats with caffeine intake was lower compared to the control group. The deformation in maximal load point of the femur shaft in the experimental group was significantly higher than in the control group. In the experimental group, the percentage of water in the bones was significantly higher, while the content of inorganic phase was significantly lower compared to the control group. The changes of biomechanical parameters in the group of pregnant rats with caffeine intake indicate its negative influence on the bone. Our results show higher plasticization of the bone shafts of the animals under the influence of caffeine. Higher deformation of bone shafts may have an effect on the statics of the skeleton. The administration of caffeine significantly affected the quantitative composition of the bone.  相似文献   

19.
Results are presented from experimental studies of plasma dynamics in a diode gap under the action of a high-current relativistic electron beam on epoxy resin at energy densities in the range of 170–860 J/cm2. The plasma expansion was studied by means of an optical streak camera. Three-dimensional numerical simulations in the one-temperature hydrodynamic approximation were also performed. The experimental data are compared with the results of numerical simulations.  相似文献   

20.
Biot's theory and the modified Biot-Attenborough (MBA) model are applied to predict the dependences of acoustic characteristics on frequency and on porosity in cancellous bone. The phase velocities and the attenuation coefficients predicted by both theories are compared with the experimental data of bovine cancellous bone specimens published in the literature. Biot's theory successfully predicts the dependences of the phase velocity on frequency and on porosity in cancellous bone, whereas a significant discrepancy is observed between the predicted and the measured attenuation coefficients. The MBA model agrees well with the frequency and the porosity dependences of the phase velocity and the attenuation coefficient experimentally measured in bovine bones. Although the MBA model relies on phenomenological parameters derived from the experimental data, its approach to cancellous bone can be usefully employed in the field of clinical ultrasonic bone assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号