首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clinical results of total knee joint arthroplasty with patellar replacement have shown that postoperative problems arise, especially under unfavourable biomechanical conditions. The findings concerning retropatellar contact forces have been obtained by means of different methods, partly through experimental investigations and partly through theoretical considerations. But so far patellar replacement criteria and the resulting changes of the retropatellar contact force were not taken into consideration in other studies. Our mathematical model is based on a mechanical one and the parameter study considers the influence of the height of the patellar surface replacement upon different biomechanical parameters at varying positions. The results suggest that the patellar replacement should therefore be kept as low as possible, thus reducing the retropatellar contact force to a minimum, especially in the extremely stressed flexion areas of up to about 90 degrees.  相似文献   

2.
Our laboratory has developed a small animal model using Giant Flemish rabbits to examine chronic degradative changes in joint tissues following a blunt impact. Historically, we observe surface fissuring and decreases in the elastic modulus of retropatellar cartilage along with thickening of the underlying subchondral bone. Previous studies resulted in load insults that peaked in approximately 5ms, while loads that occur during automotive accidents or heavy exercise can produce longer rise times. The objective of the current study was to examine the influence of blunt impact loading rate using our established model. We hypothesized that the extent of fissuring and softening of retropatellar cartilage following impact would not be significantly different for a high (5ms to peak) versus low (50ms to peak) rate of loading experiment. Eight animals were impacted with a high rate of loading blunt impact, while ten animals were subjected to the same impact load at a low rate of loading. An additional eight animals served as a control population. All animals were sacrificed 12 months post-impact. The study yielded unexpected results for the first hypothesis. The high rate of loading experiments generated more surface fissuring of the retropatellar cartilage than the low rate of loading experiments. However, the degree of softening was similar for the two rates, which supported the second hypothesis. Furthermore, the study documented more thickening of bone underlying retropatellar cartilage following the high versus the low rate of loading experiments. The current study suggested that chronic injury mechanisms may be highly dependent on the rate of impact loading. These data could become extremely relevant in the development of high-velocity "safety" devices, such as knee air bags, that are needed to help position an unbelted occupant in an automobile crash.  相似文献   

3.
This laboratory has developed a subfracture, joint trauma model in rabbits. Using a dropped impact mass directed onto a slightly abducted joint, chronic softening of retropatellar cartilage and thickening of underlying subchondral bone are documented in studies to 1 year post-insult. It has been hypothesized that these tissue changes are initiated by stresses developed during impact loading. A previous analytical study by this laboratory suggests that tensile strains in retropatellar cartilage can be significantly lowered, without significantly changing the intensity of stresses in the underlying subchondral bone, by reorientation of patellar impact more centrally on the joint. In the current study comparative experiments were performed on groups of animals after either an impact directed on the slightly abducted limb or a more central impact. One-year post-trauma in animals subjected to the central-oriented impact no degradation of the shear modulus for the retropatellar cartilage was documented, but the thickness of the underlying subchondral bone was significantly increased. In contrast, alterations in cartilage and underlying bone following impact on the slightly abducted limb were consistent with previous studies. The current experimental investigation showed the sensitivity of post-trauma alterations in joint tissues to slight changes in the orientation of impact load on the joint. Interestingly, for this trauma model thickening of the underlying subchondral plate occurred without mechanical degradation of the overlying articular cartilage. This supports the current laboratory hypothesis that alterations in the subchondral bone and overlying cartilage occur independently in this animal model.  相似文献   

4.
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young’s modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson’s correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young’s modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.  相似文献   

5.
We have recently developed a trauma model to study degradation of the rabbit patello-femoral joint. Our current working hypothesis is that alterations in retropatellar cartilage and underlying bone in our model are initiated independently by acute overstresses developed in each tissue during blunt insult to the joint, and that the processes of chronic degradation in each tissue are not related in a mechanical sense. The current study was conducted in an attempt to help validate our hypothesis by impacting the patello-femoral joint with a padded interface. Based upon earlier human cadaver experiments, we believe this would reduce the acute overstresses in patellar bone while the stresses developed in the overlying retropatellar cartilage would be sufficient enough to initiate a chronic softening of the tissue. Twenty-four animals received an impact to the patello-femoral joint and were sacrificed at either 0, 4.5, or 12 months post-insult. Three acute animals were impacted to develop a simplified computational model to estimate the stresses in joint tissues. The study showed there was a significant softening of the retropatellar cartilage at 4.5 and 12 months post-trauma, compared to unimpacted controls. However, no thickening of the underlying subchondral bone was documented at any timepoint. This was consistent with a reduction of stress in the bone compared to earlier studies, which document thickened subchondral bone post-insult at the same applied impact load. In conclusion, this study helped validate our hypothesis by documenting chronic softening of cartilage without remodeling of the underlying subchondral bone. Furthermore, this study, along with our earlier studies, suggest that impact load alone, which is currently used by the automobile industry to certify new automobiles, is not a good predictor of chronic injuries to a diarthrodial joint, and that simply the addition of padding to impact interfaces may not be adequate to protect occupants from chronic injuries.  相似文献   

6.
The aim of the present study was to evaluate retropatellar contact characteristics at different angles of flexion of the knee joint. To this end, 6 cadaveric legs were examined using pressure sensitive film (Fuji Prescale type "super low") at angles of flexion of 45 degrees, 60 degrees, 90 degrees and 120 degrees both in neutral rotation and 10 degrees internal and external rotation of the femur in the same knee joints. A force of 140 N was applied to both the vastus medialis and lateralis, and a comparison made with a medially and a laterally dominating muscle force. The contact areas decreased with increasing angles of flexion. The medially dominating muscle traction increased the contact area. Comparison between internal and external rotation revealed a decrease in contact area on internal rotation. The pressure measurements were comparable in all loading situations. Comparison between neutral and medial traction revealed significant differences in contact area, pressure and force. The influence of femoral rotation showed no significant difference. A comparison of the different angles of flexion revealed only few significant differences. To prevent the development of retropatellar arthrosis, maximum contact areas are necessary. The study has shown an advantage for medially dominating muscle traction, and external rotation of the femur.  相似文献   

7.
《Cytotherapy》2014,16(5):599-611
Background aimsThe use of retropatellar fat pad–derived mesenchymal stromal cells (RFMSCs) for cell-based therapy, particularly for cartilage repair, has been reported by several investigators in recent years. However, the effects of the donor's age and medical condition on the characteristics of RFMSCs have not been well established. The aim of this study was to determine whether age and medical condition can reduce the multipotential of stem cells isolated from the retropatellar fat pad.MethodsThe RFMSCs were isolated from patients with osteoarthritic knee cartilage (degenerative group; 40–60 years old) and compared with patients without degenerative knee disease (young group; <40 years old) in terms of their growth kinetics, immunophenotype, differentiation ability and stemness gene expression.ResultsData showed that RFMSCs from both groups have similar growth kinetics and immunophenotype profile at passage 3. However, RFMSCs from the degenerative group showed lower adipogenic, osteogenic and chondrogenic differentiation ability compared with RFMSCs derived from the young group. The stemness gene expression level of RFMSCs derived from the degenerative group was lower than that in the young group. RFMSCs from both groups met the minimum criteria of mesenchymal stromal cells and have the potential for cartilage regeneration. However, RFMSCs from the degenerative group showed lower regeneration capability.ConclusionsThese results indicate that older age and osteoarthritic condition did affect the multipotential of stem cells derived from the retropatellar fat pad under the current prescribed condition. More studies will be conducted to clarify whether the age or medical condition contributed more to the loss of differentiation capacity and stemness gene expression of RFMSCs.  相似文献   

8.
The study was aimed to test the hypothesis that in the knee extension range 100 to 30 deg, the patellar "out-of-plane" tracking pattern is controlled by the passive restraint provided by the topographic interaction of the patellofemoral contacting surfaces. The out-of-plane tracking pattern, i.e., the pattern of patellar displacements not in the plane of knee extension/flexion, consists of translation in the medial-lateral direction, and rotations about the anterior-posterior axis (spin) and the proximal-distal axis (tilt). Using 15 fresh-frozen knees subjected to extensor moment magnitudes comparable to those in the "static-lifting" activity (foot-ground reaction = 334 N), the patellar displacements were measured using a calibrated six-degree-of-freedom electromechanical goniometer. The topographies of the trochlear and retropatellar surfaces were then measured using a calibrated traveling dial-gage arrangement and the same coordinate system used for the displacement measurements. Three indices were defined to quantify particular natural features of the three-dimensional topographies that are expected to control the patellar displacements. Correlation of the indices with their corresponding displacements showed that topographic interaction was significant in the control of all three displacements. However, for patellar spin, unlike for the other two displacements, the direction of the active quadriceps tension vector was also a significant controlling factor. Patellar medial-lateral translation was found to be controlled dominantly by the trochlear topography, while retropatellar topography also had a significant role in the control of the other two displacements.  相似文献   

9.
Chronic degeneration of articular cartilage and bone in a rabbit model of post-traumatic osteoarthrosis has been hypothesized to occur due to acute stresses that exceed a threshold for injury. In this study, we impacted the rabbit patellofemoral joint at low and high intensities. High-intensity impacts produced degenerative changes in the joint, such as softening of retropatellar cartilage, as measured by indentation, an increase in histopathology of the cartilage, and an increase in thickness of subchondral bone underlying the cartilage. Low-intensity impacts did not cause these progressive changes. These data suggest that low-intensity impacts produced acute tissue stresses below the injury threshold, while high-intensity impacts produced stresses that exceeded the threshold for disease pathogenesis. This study begins to identify "safe" and "unsafe" ranges of acute tissue stress, using the rabbit patella, which may have future utility in the design of injury prevention devices for the human.  相似文献   

10.
11.
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.  相似文献   

12.
Very little is known concerning the occurrence of pain in cancer research models. We wished to establish whether a behaviour-based approach, originally developed to assess postoperative pain, could be used to determine positive effects of the analgesics carprofen and meloxicam in rats that might be experiencing pain during tumour development in an orthotopic model of bladder cancer. An invasive but non-metastatic rat bladder cancer cell line was surgically implanted into the bladder wall of 57 inbred Fisher344 rats. The rats underwent daily clinical assessments. When clinical signs consistent with chronic pain were apparent, behavioural data were collected from 44 animals during 2 x 10 min periods, immediately before and one hour after a subcutaneous injection of either physiological saline (0.9%; 0.2 ml/100 g), carprofen (5 mg/kg) or meloxicam (2 mg/kg). Treatment-associated behaviour changes were then compared between groups. The lack of active behaviour, both before and after each treatment, was consistent with established clinical signs of pain. The rats were so inactive following the treatment that the behavioural technique we had previously developed was of comparatively little use in determining either pain severity or analgesic efficacy. One very prominent effect, however, was an increase in ventral abdominal licking in the control (saline) group. As this was absent in rats given meloxicam or carprofen, and has previously been considered to indicate pain emanating from damaged tissue, it was concluded that the analgesic-treated rats gained at least some benefit from the drug treatments, but it was not possible to gauge the extent of this. Handling for examination or treatment may have intensified pain in rats in the control group, and so this should be avoided whenever possible. It is likely that post-surgical pain differs markedly from cancer pain, so a different set of behavioural markers may be needed to assess it effectively. More intensive behaviour monitoring may help to develop a suitable technique for detecting the onset of, and assess the severity of pain that may occur during tumour development.  相似文献   

13.
Role of the immune system in chronic pain   总被引:13,自引:0,他引:13  
During the past two decades, an important focus of pain research has been the study of chronic pain mechanisms, particularly the processes that lead to the abnormal sensitivity - spontaneous pain and hyperalgesia - that is associated with these states. For some time it has been recognized that inflammatory mediators released from immune cells can contribute to these persistent pain states. However, it has only recently become clear that immune cell products might have a crucial role not just in inflammatory pain, but also in neuropathic pain caused by damage to peripheral nerves or to the CNS.  相似文献   

14.
Persistent pain is a common health problem for older adults, age 60+, with a prevalence twice that in younger adults. Yet, older adults with chronic pain and headache are underrepresented in behaviorally oriented clinical programs that have proven effective for younger adults. A review of the literature indicates that older adults develop multiple pain-related problems that are similar to those of younger individuals. When offered the opportunity, older pain patients accept and benefit from multidisciplinary pain programs, cognitive–behavioral therapies and biofeedback training. A study comparing 58 older and 59 younger adults in a multidisciplinary pain program indicates that older pain patients readily acquire the physiological self-regulation skills taught in biofeedback-assisted relaxation training, and achieve comparable decreases in pain for the pain program as a whole.  相似文献   

15.
Musculoskeletal-related pain is one of the most disabling health conditions affecting more than one third of the adult population worldwide. Pain from various mechanisms and origins is currently underdiagnosed and undertreated. The complexity of molecular mechanisms correlating pain and the progression of musculoskeletal diseases is not yet fully understood. Molecular biomarkers for objective evaluation and treatment follow-up are needed as a step towards targeted treatment of pain as a symptom or as a disease. Stem cell therapy is already under investigation for the treatment of different types of musculoskeletal-related pain. Mesenchymal stem cell-based therapies are already being tested in various clinical trials that use musculoskeletal system-related pain as the primary or secondary endpoint. Genetically engineered stem cells, as well as induced pluripotent stem cells, offer promising novel perspectives for pain treatment. It is possible that a more focused approach and reassessment of therapeutic goals will contribute to the overall efficacy, as well as to the clinical acceptance of regenerative medicine therapies. This article briefly describes the principal types of musculoskeletal-related pain and reviews the stem cell-based therapies that have been specifically designed for its treatment.  相似文献   

16.
Medical personnel in public clinics in Fiji routinely contend that state-funded medical resources are misallocated on patients who complain of, but do not actually experience, physical pain. Frequently, these patients are identified as being Indo-Fijian women (i.e., women of South Asian origin in Fiji). In this article, I examine clinical interactions between medical staff and female Indo-Fijian patients to demonstrate how "real" and 'unreal' pain are distinguished in the clinical setting and to indicate some of the roles clinical encounters play in community processes that ascribe alternative meanings to physical pain. Focusing on how both physicians and women patients foster certain interpretations of physical pain over others, I argue that the category of 'unreal' pain, as employed by Fiji's physicians, consists of pain that medical professionals consider to be induced by psychological or physical, work-related stresses. I then show how Indo-Fijian women engage in a complementary but distinct discourse that emphasizes links between physical labor and pain and suggests that, in some cases, expressions of physical pain are as much an idiom of pride as an idiom of distress.  相似文献   

17.
Transcutaneous pressure with pressure probes of arbitrary diameters have been commonly used for measuring the threshold and magnitude of muscle pain, yet this procedure lacks scientific validation. To examine the valid probe dimensions, we conducted physiological experiments using 34 human subjects. Pin-prick pain, pressure pain threshold (PPT) to pressure probes of various diameters, heat pain threshold, and electrical pain threshold of deep tissues were measured before and after application of surface lidocaine anesthesia to the skin surface over the brachioradial muscle in a double-blinded manner. The anesthesia neither affected PPT with larger probes (diameters: 1.6 and 15?mm) nor increased electric pain threshold of deep structures, whereas it diminished pain count in pin-prick test and PPT with a 1.0?mm diameter probe, suggesting that mechanical pain thresholds measured with 1.6 and 15?mm probes reflect the pain threshold of deep tissues, possibly muscle. Pain thresholds to heat did not change after application of the anesthesia. These results suggest that larger pressure probes can give a better estimation of muscular pain threshold.  相似文献   

18.
Transcutaneous pressure with pressure probes of arbitrary diameters have been commonly used for measuring the threshold and magnitude of muscle pain, yet this procedure lacks scientific validation. To examine the valid probe dimensions, we conducted physiological experiments using 34 human subjects. Pin-prick pain, pressure pain threshold (PPT) to pressure probes of various diameters, heat pain threshold, and electrical pain threshold of deep tissues were measured before and after application of surface lidocaine anesthesia to the skin surface over the brachioradial muscle in a double-blinded manner. The anesthesia neither affected PPT with larger probes (diameters: 1.6 and 15 mm) nor increased electric pain threshold of deep structures, whereas it diminished pain count in pin-prick test and PPT with a 1.0 mm diameter probe, suggesting that mechanical pain thresholds measured with 1.6 and 15 mm probes reflect the pain threshold of deep tissues, possibly muscle. Pain thresholds to heat did not change after application of the anesthesia. These results suggest that larger pressure probes can give a better estimation of muscular pain threshold.  相似文献   

19.
20.
Chronic pain is a frequent medical condition that has a significant impact on patients, including their ability to function and enjoy life. In addition, chronic pain has a substantial economic impact on the workplace and costs of healthcare. Although not without controversy, opioids are effective in the treatment of noncancer chronic pain. Understanding the pattern of temporal variations in a patient's pain is important in developing an opioid-based treatment plan. By understanding those times of day and activities that may precipitate severe episodes of pain, tailored opioid treatment plans can be developed that manage pain, improve patient functionality, and minimize side effects. Recently developed rapid-onset opioid formulations should be considered as part of the chronic pain management strategy in addition to more traditional long-acting, sustained-release formulations and short-acting, normal-release formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号