首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow cytometry is an invaluable technique in research and clinical laboratories. The technique has been applied extensively to many areas of radiation research at both the experimental and clinical level. In the past few years, there has been a significant increase in the capabilities of modern flow cytometers to undertake multicolor analysis in a user-friendly manner. The developments in cytometric technology are being matched by the rapid development of new reagents, new fluorochromes and new platforms such as bead arrays. These developments are facilitating many new applications in both basic and clinical research that have relevance for many fields of biology, including radiation research. This review provides a historical overview of the application of flow cytometry to radiobiology and an update on how technology and reagents have changed and cites examples of new applications relevant to radiation researchers. In addition, some entirely new flow instrumentation is currently under development that has significant potential for applications in radiation research.  相似文献   

2.
Flow NMR techniques are now well accepted and widely used in many areas of drug discovery. Although natural-product-, rational-drug-design-, and NMR-screening-programs have begun to use flow NMR more routinely, flow NMR has not yet gained widespread acceptance in combinatorial chemistry, even though it has been shown to be a potentially useful tool. Recent developments in DI-NMR, FIA-NMR, and LC-NMR will help flow NMR eventually gain a wider acceptance within combinatorial chemistry. These developments include LC-NMR-MS instrumentation, flow probe improvements, new pulse sequences, improved automation of NMR data analysis, and the application of flow NMR to related fields in drug discovery.  相似文献   

3.
The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.  相似文献   

4.
In proteomics, rapid developments in instrumentation led to the acquisition of increasingly large data sets. Correspondingly, ProDaC was founded in 2006 as a Coordination Action project within the 6th European Union Framework Programme to support data sharing and community‐wide data collection. The objectives of ProDaC were the development of documentation and storage standards, setup of a standardized data submission pipeline and collection of data. Ending in March 2009, ProDaC has delivered a comprehensive toolbox of standards and computer programs to achieve these goals.  相似文献   

5.
The use of capillary electrophoresis (CE) for the analysis, identification, and characterization of microorganisms has been gaining in popularity. The advantages of CE, such as small sample requirements, minimal sample preparation, rapid and simultaneous analysis, ease of quantitation and identification, and viability assessment, make it an attractive technique for the analysis of microbial analytes. As this instrumental method has evolved, higher peak efficiencies have been achieved by optimizing CE conditions, such as pH, ionic strength, and polymer additive concentration. Experimental improvements have allowed better quantitation and more accurate results. Many practical applications of this technique have been investigated. Viability and identification of microbes can be accomplished in a single analysis. This is useful for evaluation of microbial analytes in consumer products. Diagnosis of microbe-based diseases is now possible, in some cases, without the need for culture methods. Microbe-molecule, virus-antibody, or bacteria-antibiotic interactions can be monitored using CE, allowing for the screening of possible drug candidates. Fermentation can be monitored using this system. This instrumental approach can be adapted to many different applications, including assessing the viability of sperm cells. Progress has been made in the development of microelectrophoresis instrumentation. These advances will eventually allow the development of small, dedicated devices for the rapid, repetitive analyses of specific microbial samples. Although these methods may never fully replace traditional approaches, they are proving to be a valuable addition to the collection of techniques used to analyze, quantitate, and characterize microbes. This review outlines the recent developments in this rapidly growing field.  相似文献   

6.
The use of capillary electrophoresis (CE) for the analysis, identification, and characterization of microorganisms has been gaining in popularity. The advantages of CE, such as small sample requirements, minimal sample preparation, rapid and simultaneous analysis, ease of quantitation and identification, and viability assessment, make it an attractive technique for the analysis of microbial analytes. As this instrumental method has evolved, higher peak efficiencies have been achieved by optimizing CE conditions, such as pH, ionic strength, and polymer additive concentration. Experimental improvements have allowed better quantitation and more accurate results. Many practical applications of this technique have been investigated. Viability and identification of microbes can be accomplished in a single analysis. This is useful for evaluation of microbial analytes in consumer products. Diagnosis of microbe-based diseases is now possible, in some cases, without the need for culture methods. Microbe-molecule, virus-antibody, or bacteria-antibiotic interactions can be monitored using CE, allowing for the screening of possible drug candidates. Fermentation can be monitored using this system. This instrumental approach can be adapted to many different applications, including assessing the viability of sperm cells. Progress has been made in the development of microelectrophoresis instrumentation. These advances will eventually allow the development of small, dedicated devices for the rapid, repetitive analyses of specific microbial samples. Although these methods may never fully replace traditional approaches, they are proving to be a valuable addition to the collection of techniques used to analyze, quantitate, and characterize microbes. This review outlines the recent developments in this rapidly growing field.  相似文献   

7.
Biosensors     
Two decades of research into biosensors has been accelerated recently by the commercial potential offered by biotechnology. New developments in biosensor technology in which a biologically sensitive material is immobilized in intimate contact with a suitable potentiometric, amperometric, optical or other transducer are described. It is expected that some of these devices will be commercialized in 1984.  相似文献   

8.
Recent developments in instrumentation and bioinformatics show that the technique of synchrotron radiation circular dichroism spectroscopy can provide novel information on protein secondary structures and folding motifs, and has the potential to play an important role in structural genomics studies, both as a means of target selection and as a high-throughput, low-sample-requiring screening method. This is possible because of the additional information content in the low-vacuum ultraviolet wavelength data obtainable with intense synchrotron radiation light sources, compared with that present in spectra from conventional lab-based circular dichroism instruments.  相似文献   

9.
Two phases have been distinguished classically in the history of Latin American phycological research: the explorer phase characterized by the taxonomic work of mainly European and North American scientists, and the diversification phase marked by the establishment of resident scientists in the area and the training of a new generation of phycologists in subjects other than taxonomy. Over the last 15 years, Chile has entered a third phase, characterized by a significant increase in scientific and economic activity centered around seaweeds. Seaweed cultivation has been commercialized; raw materials are now locally processed and economic returns have more than tripled. In addition, some groups of opportunistic seaweed gatherers have become farmers. Loosely correlated with the above developments has been a significant increase in the number of scientific and technological studies related to seaweeds, in the number of professional phycologists and in the specialization of the various groups. This study first describes these new developments and the conceptual advances achieved in farming and resource management. It also emphasizes some socio-economic differences with seaweed farming in other countries and explores the level of interaction between the local scientific and productive sectors in view of future developments.  相似文献   

10.
Nature exploits biosynthetic cascades to construct numerous molecules from a limited set of starting materials. A deeper understanding of biosynthesis and extraordinary developments in gene technology has allowed the manipulation of natural pathways and construction of artificial cascades for the preparation of a range of molecules, which would be challenging to access using traditional synthetic chemical approaches. Alongside these metabolic engineering strategies, there has been continued interest in developing in vivo and in vitro biocatalytic cascades. Advancements in both metabolic engineering and biocatalysis are complementary, and this article aims to highlight some of the most exciting developments in these two areas with a particular focus on exploring those that have the potential to advance both pathway engineering and more traditional biocatalytic cascade development.  相似文献   

11.
Very recent developments in instrumentation and image analysis have made microscopy applicable to high-throughput screening (HTS). For 'High-Content Screening' modern automated microscopy systems provide a throughput of up to 100,000 (confocal) images, with amazingly high resolution, of cells fluorescently stained using multiple colours that are imaged simultaneously during the screen. Image analysis tools provide multi-parametric pattern extraction and quantification on-the-fly. Big pharmaceutical companies have presented image-based screens of more than 100,000 compounds, while academia has published data on large RNA interference screens for functional genomics. Numerous whole-genome sequencing projects have been completed and published. Gene annotation is still in flux. Nevertheless, about 23,000 human genes have been reliably annotated. Additionally, gene expression array technologies and proteomics have added further data on molecules present in cells and tissues. The major challenge of the present and future is to unravel the detailed function of all these gene products and their interaction. One way to gain insight, is to design oligonucleotides that induce lack-of-function phenotypes by specifically inhibiting protein production.  相似文献   

12.
Aims Grasslands are the world's most extensive terrestrial ecosystem, and are a major feed source for livestock. Meeting increasing demand for meat and other dairy products in a sustainable manner is a big challenge. At a field scale, Global Positioning System and ground-based sensor technologies provide promising tools for grassland and herd management with high precision. With the growth in availability of spaceborne remote sensing data, it is therefore important to revisit the relevant methods and applications that can exploit this imagery. In this article, we have reviewed the (i) current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, (ii) the technological and methodological developments to retrieve different grassland biophysical parameters and management characteristics (i.e. degradation, grazing intensity) and (iii) identified the key remaining challenges and some new upcoming trends for future development.Important findings The retrieval of grassland biophysical parameters have evolved in recent years from classical regression analysis to more complex, efficient and robust modeling approaches, driven by satellite data, and are likely to continue to be the most robust method for deriving grassland information, however these require more high quality calibration and validation data. We found that the hypertemporal satellite data are widely used for time series generation, and particularly to overcome cloud contamination issues, but the current low spatial resolution of these instruments precludes their use for field-scale application in many countries. This trend may change with the current rise in launch of satellite constellations, such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by Skybox Imaging. Microwave imagery has not been widely used for grassland applications, and a better understanding of the backscatter behaviour from different phenological stages is needed for more reliable products in cloudy regions. The development of hyperspectral satellite instrumentation and analytical methods will help for more detailed discrimination of habitat types, and the development of tools for greater end-user operation.  相似文献   

13.
Recent advances in technology and associated methodology have made the current period one of the most exciting in molecular biology and medicine. Underlying these is an appreciation that modern research is driven by increasing large amounts of data being interpreted by interdisciplinary collaborative teams which are often geographically dispersed. The availability of cheap computing power, high speed informatics networks and high quality analysis software has been essential to this as has the application of modern quality assurance methodologies. In this review, we discuss the application of modern 'High-Throughput' molecular biological technologies such as 'Microarrays' and 'Next Generation Sequencing' to scientific and biomedical research as we have observed. Furthermore in this review, we also offer some guidance that enables the reader as to understand certain features of these as well as new strategies and help them to apply these i-Gene tools in their endeavours successfully. Collectively, we term this 'i-Gene Analysis'. We also offer predictions as to the developments that are anticipated in the near and more distant future.  相似文献   

14.
In seeking approval from the US Food and Drug Administration (FDA) for clinical trial evaluation of an experimental medical device, a sponsor is required to submit experimental findings and support documentation to demonstrate device safety and efficacy that are in compliance with Good Laboratory Practices (GLP). The objective of this project was to develop an integrated data acquisition (DAQ) system and documentation strategy for monitoring and recording physiological data when testing medical devices in accordance with GLP guidelines mandated by the FDA. Data aquisition systems were developed as stand-alone instrumentation racks containing transducer amplifiers and signal processors, analog-to-digital converters for data storage, visual display and graphical user-interfaces, power conditioners, and test measurement devices. Engineering standard operating procedures (SOP) were developed to provide a written step-by-step process for calibrating, validating, and certifying each individual instrumentation unit and the integrated DAQ system. Engineering staff received GLP and SOP training and then completed the calibration, validation, and certification process for the individual instrumentation components and integrated DAQ system. Eight integrated DAQ systems have been successfully developed that were inspected by regulatory affairs consultants and determined to meet GLP guidelines. Two of these DAQ systems were used to support 40 of the pre-clinical animal studies evaluating the AbiCor artificial heart (ABIOMED, Danvers, MA). Based in part on these pre-clinical animal data, the AbioCor clinical trials began in July 2001. The process of developing integrated DAQ systems, SOP, and the validation and certification methods used to ensure GLP compliance are presented in this article.  相似文献   

15.
Regression methods offer a common framework to analyze linkage for quantitative trait loci as well as linkage for affection status using affected sib-pairs. Although numerous papers on regression methods for linkage have been published, some common themes and important caveats tend to be scattered across the literature. For example, the typical approach is to regress a function of traits on identical-by-descent (IBD) information, but the reversal (regression of IBD on a function of traits) offers important insights. A second example is the use of regression equations to assess linkage heterogeneity or gene-environment interaction, and why these two different etiologies are difficult to distinguish with affected sib-pair data. A third example has to do with the differences, and similarities, between linear regression and non-linear regression methods for affected sib-pair data. The purposes of this paper are to review some recent developments in the linkage regression framework, to emphasize strengths and weaknesses of various proposed methods, and to highlight some important assumptions and caveats.  相似文献   

16.
Lantibiotics: structure, biosynthesis and mode of action   总被引:30,自引:0,他引:30  
The lantibiotics are a group of ribosomally synthesised, post-translationally modified peptides containing unusual amino acids, such as dehydrated and lanthionine residues. This group of bacteriocins has attracted much attention in recent years due to the success of the well characterised lantibiotic, nisin, as a food preservative. Numerous other lantibiotics have since been identified and can be divided into two groups on the basis of their structures, designated type-A and type-B. To date, many of these lantibiotics have undergone extensive characterisation resulting in an advanced understanding of them at both the structural and mechanistic level. This review outlines some of the more recent developments in the biochemistry, genetics and mechanism of action of these peptides.  相似文献   

17.
Among a plethora of nano-sized therapeutics, metal-organic frameworks (MOFs) have been some of the most investigated novel materials for, predominantly, cancer drug delivery applications. Due to their large drug uptake capacities and slow-release mechanisms, MOFs are desirable drug delivery vehicles that protect and transport sensitive drug molecules to target sites. The inclusion of other guest materials into MOFs to make MOF-composite materials has added further functionality, from externally triggered drug release to improved pharmacokinetics and diagnostic aids. MOF-composites are synthetically versatile and can include examples such as magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that improve the blood-circulation time. From synthesis to applications, this review will consider the main developments in MOF-composite chemistry for biomedical applications and demonstrate the potential of these novel agents in nanomedicine. It is concluded that, although vast synthetic progress has been made in the field, it requires now to develop more biomedical expertise with a focus on rational model selection, a major comparative toxicity study, and advanced targeting techniques.  相似文献   

18.
RNA sequencing: advances, challenges and opportunities   总被引:5,自引:0,他引:5  
  相似文献   

19.
Yann R. Chemla 《Biopolymers》2016,105(10):704-714
Optical tweezers have become a powerful tool to investigate nucleic‐acid processing proteins at the single‐molecule level. Recent advances in this technique have now enabled measurements resolving the smallest units of molecular motion, on the scale of a single base pair of DNA. In parallel, new instrumentation combining optical traps with other functionalities have been developed, incorporating mechanical manipulation along orthogonal directions or fluorescence imaging capabilities. Here, we review these technical advances, their capabilities, and limitations, focusing on benchmark studies of protein‐nucleic acid interactions they have enabled. We highlight recent work that combines several of these advances together and its application to nucleic‐acid processing enzymes. Finally, we discuss future prospects for these exciting developments. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 704–714, 2016.  相似文献   

20.
Shapiro JA 《Gene》2005,345(1):91-100
The last 50 years of molecular genetics have produced an abundance of new discoveries and data that make it useful to revisit some basic concepts and assumptions in our thinking about genomes and evolution. Chief among these observations are the complex modularity of genome organization, the biological ubiquity of mobile and repetitive DNA sequences, and the fundamental importance of DNA rearrangements in the evolution of sequenced genomes. This review will take a broad overview of these developments and suggest some new ways of thinking about genomes as sophisticated informatic storage systems and about evolution as a systems engineering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号