首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The normal reaction of the cœlomic fluid in Patiria miniata and Asterias ochraceus is pH 7.6, and of the cæca, 6.7, compared with sea water at 8.3, all without salt error correction. A medium at pH 6.7–7.0 is optimum for the cæca for ciliary survival and digestion of protein, and is maintained by carbon dioxide production. The optimum pH found for carbon dioxide production is a true one for the effect of hydrogen ion concentration on the tissue. It does not represent an elimination gradient for carbon dioxide. Because the normal excised cæca maintain a definite hydrogen ion concentration and change their internal environment toward that as an optimum during life, there exists a regulatory process which is an important vital function.  相似文献   

2.
Although the results we have recorded merely serve to indicate the possibilities of this interesting field of investigation, we have sufficient data to enable us to draw certain general conclusions. In the first place it is evident that the bloods of the more highly developed marine invertebrates, such as the active Crustacia and the Cephalopods, are specially adapted for the carriage of carbon dioxide. The quantity of carbon dioxide taken up by the blood of Maia, Palinurus, or Octopus at any given tension of the gas is, in general, about twice or three times as great as that which is taken up by sea water under the same conditions. On the other hand, the blood of a slow, creeping form, such as Aplysia, or of a sessile animal such as the ascidian Phallusia shows no more adaptation for the carriage of carbon dioxide than does sea water. But our estimations of the CO2 content of the blood as it circulates in the bodies of these more active invertebrates show that the conditions of transport of this gas differ considerably in some respects from those which obtain in mammals. For the invertebrate blood in the body contains only a relatively small quantity of carbon dioxide, averaging in the forms we examined from 3 to 10 cc. per 100 cc. of blood. This forms a marked contrast with the condition found in mammals where even the arterial blood contains about 50 cc. of CO2 per 100 cc. of blood. The invertebrate, therefore, works at a very low CO2 tension. There is a twofold significance in this circumstance. In the first place, it means that only the first portion of the carbon dioxide dissociation curve is in use in the respiratory mechanism. Now an inspection of our curves will show that at these low carbon dioxide tensions the dissociation curves tend to be steeper than at higher tensions. As we intend to show in a later paper it can be proved mathematically that, other things being equal, a blood with a carbon dissociation curve of moderate steepness, i.e. one in which the carbon dioxide content of the blood increases fairly rapidly with increase of carbon dioxide tension, is a more efficient carrier of the gas from the tissues to a respiratory surface than a blood in which the dissociation curve is either steeper or flatter. It would seem as if the active invertebrates avoid the use of too flat a part of their CO2 dissociation curves by working over the initial steeper portion. Furthermore, it is seen that over the range of this initial steep portion of the curves the changes of reaction produced by the uptake of carbon dioxide are much smaller than at higher tensions of the gas; for these initial portions of the curves are more nearly parallel to the lines of constant reaction calculated for a temperature of 15°C. according to Hasselbalch''s method (10) on the assumption that the whole of the combined CO2 is in the form of sodium bicarbonate. It is evident also that on this assumption the hydrogen ion concentration of the blood of invertebrates (with the exception of the tunicates) would appear to be practically the same as that of the warm-blooded vertebrates—a conclusion confirmed by the direct measurements of Quagliariello (9). On the other hand, our measurements do not lend support to the idea put forward by Collip (4) that in order to maintain an appropriate faintly alkaline reaction an invertebrate needs to retain carbon dioxide in its blood at a comparatively high tension. This idea was based on the observation that at comparatively high CO2 tensions the blood of invertebrates contains considerably more sodium bicarbonate than does sea water. But our curves show that this is no longer true at the lower values of carbon dioxide tension, the amount of sodium bicarbonate falling off more rapidly in the blood than in the sea water with diminution of the carbon dioxide tension so that in order to maintain an appropriate reaction in the blood only a comparatively small tension of CO2 is required. The largest amount of carbon dioxide that we found present in the circulating blood of any of the types examined was 9.7 cc. per 100 cc. of blood in the case of Maia, and in most cases the amount was considerably less. But even this lowest value corresponds to a tension of CO2 of only about 3 mm., so that the tension gradient across the gill membrane must be even less than this. We would emphasize rather the circumstances that as the portion of the dissociation curve over which the reaction is approximately constant is of but small extent, it is necessary that in an active form like Octopus the carbon dioxide produced should be removed rapidly lest an accumulation of it should cause the limits of normal reaction to be exceeded; and this need is correlated with the extreme efficiency of the respiratory apparatus in this animal. It is interesting to notice that the mammal which, in order to obtain an appropriate reaction in the blood, has to work at relatively high carbon dioxide tensions where the dissociation curve is comparatively flat, secures a steeper physiological CO2 dissociation curve in the body, and with it a more efficient carriage of carbon dioxide and a more constant reaction in the circulating fluid, in virtue of the effect of oxygenation on the carbon dioxide-combining power of its blood (3, 6). Returning now to the consideration of the actual form of the dissociation curves we have obtained—it is a significant fact that it is in those forms such as Maia, Palinurus, and Octopus whose bloods are rich in proteins—particularly hemocyanine—that the initial steep portion of the curve is observed. This suggests that in these forms the blood proteins act as weak acids and expel carbon dioxide from the blood at the low tensions which include the physiological range, just as in vertebrates the hemoglobin similarly displaces carbonic acid from its combination with alkali metal. On the other hand the cœlomic fluid of Aplysia contains no pigment and only 0.00672 per cent of protein nitrogen (Bottazzi (11)) and shows no initial rapidly ascending portion of the CO2 dissociation curve. This is supported by the observation of Quagliariello (9) that the acid-neutralising power of the blood of an invertebrate is roughly proportional to its protein content. It seems as if the proteins of invertebrate blood like the blood proteins of vertebrates, exist in the form of sodium salts which are capable of giving up sodium for the transport of carbon dioxide as sodium bicarbonate. That this is so in the case of hemocyanine follows from the fact that the isoelectric point of this pigment occurs at a hydrogen ion concentration of 2.12 x 10–5 N, i.e. at a pH of 4.67 (Quagliariello (12)) so that in the alkaline blood of the invertebrates possessing it, hemocyanine will act as a weak acid. It is probable that the initial steep portion of the carbon dioxide dissociation curves which we have found to be of such importance in the respiration physiology of Octopus, Palinurus, and Maia is produced by the competition of this acid with carbonic acid for the available sodium of the blood.  相似文献   

3.
Serial measurements of total body potassium in 21 patients with chronic renal failure being treated with three 10-hour periods of dialysis per week, against a dialysate fluid containing 1·5 mEq of potassium per litre, showed no evidence of potassium depletion. Mild hyperkalaemia was found in some patients before dialysis, correlated with the pre-dialysis hydrogen ion concentration. Hypokalaemia occurred during dialysis in almost half of the studies made; the plasma potassium concentration, however, rose to normal levels within two to four hours of stopping dialysis. A delay in the movement of potassium from the cells into the extracellular fluid is suggested as a cause for the observed hypokalaemia.In all but one patient the pre-dialysis blood pH was normal, but rose to alkalaemic levels during dialysis. A pronounced degree of hypocapnia was noted before dialysis, and this was not altered by a rising blood pH during dialysis. It is suggested that a stimulus to respiration other than the hydrogen ion gradient between the brain cells and cerebral spinal fluid may produce the observed hypocapnia.  相似文献   

4.
The infective larva of L. eugenii is enveloped in two cuticles which are discarded when the larva exsheaths in the sacculated portion of the wallaby's stomach. In vitro larvae exsheathed in a 0·85% solution of sodium chloride at 37°C, buffered to pH 7 with bicarbonate ion and 40% carbon dioxide. Survival was enhanced if the liquid phase contained medium 199 and serum, and exsheathment was quicker if exposure to carbon dioxide was 1 h rather than 1 day or 7 days. As larvae exsheathed, contractions of the pharynx commenced, and medium was ingested, even when larvae were enveloped in both cuticles. The stimuli for exsheathment and the subsequent pattern of events are like those already recognised in some trichostrongyles.  相似文献   

5.
Manometric measurements were made of oxygen uptake (Q OO2) and aerobic lactic acid output (QG) by slices of cerebral cortex and medulla oblongata of the cat in the presence of mixtures of 1, 5, and 20 volumes per cent of carbon dioxide in oxygen. The concentrations of NaHCO3 and NaCl in the medium were varied to maintain constant pH and sodium ion concentrations. The calcium ion concentration was 0.0002 M. At pH 7.5 under these conditions, an increase in carbon dioxide from 1 per cent to 5 per cent doubled the QG of both tissues but did not alter Q OO2; an increase from 5 per cent to 20 per cent carbon dioxide had no further effect on QG in either tissue or Q OO2 of cortex, but did depress the Q OO2 of medulla. At pH 8.1, an increase in carbon dioxide from 1 per cent to 5 per cent raised the Q OO2 and QG of cortex by about 60 per cent. Measurements at low oxygen tension carried out previously in phosphate medium were repeated in bicarbonate medium to obtain data for the combined output of lactic acid and carbon dioxide (QA). When the oxygen in the gas phase was decreased from 95 to 3 volumes per cent, the lactic acid output as measured colorimetrically increased by 114 mg./gm. in cortex and by 8 mg./gm. in medulla; QA increased from 12.3 to 13.5 in cortex and decreased from 5.1 to 3.8 in medulla.  相似文献   

6.
Carbon dioxide assimilation by duckweed, S. polyrrhiza, was measured using a glass assimilation box and 14C-NaHCO3, under different pH conditions of water. S. polyrrhiza assimilates carbon dioxide from both air and water. The carbon assimilation from air is comparable to the assimilation from water under normal pH conditions.  相似文献   

7.
A simple, stable, and transferable coculture of Clostridium collagenovorans and Methanosarcina barkeri that readily degraded gelatin into methane and carbon dioxide was developed. In monoculture, C. collagenovorans fermented all of the amino acids in gelatin except proline into acetate and carbon dioxide as the main products, with hydrogen, isovalerate, and isobutyrate detected in trace amounts (<1 mM). In coculture with M. barkeri, gelatin was transformed into methane and carbon dioxide, with varying levels of intermediary acetate formed as a function of incubation time. Various complex proteinaceous polymers could be readily transformed into methane and carbon dioxide at 30 to 40°C by a stable coculture which did not require exogenous growth factor additions. In addition, the coculture was readily transferable and preserved in the viable state for long periods, and methanogenesis could be initiated rapidly without the need for exogenous pH control.  相似文献   

8.
1. In the newly laid egg of the domestic fowl the pH values of the albumen and yolk are about 7.6 and 6.0 respectively. 2. When the egg is stored in air there is a loss of carbon dioxide from the albumen and the pH of this fluid rises to a maximum value of about 9.5. A large proportion of the carbon dioxide which remains in the albumen is in the form of carbonate. 3. In the fertile incubated egg the pH of the albumen attains a maximum value within a period of about 2 days; the albumen then becomes less alkaline and it is nearly neutral by the end of the second week. The increasing acidity of the albumen can be attributed to (a) the secretion of hydrogen ions by the blastoderm and (b) the output of carbon dioxide by developing tissues. 4. During the first 2 weeks of incubation the pH of the yolk progressively increases to a maximum value of about 7.5: there is then a tendency for the pH of this fluid to fall and the yolk that is retained within the body of the hatched chick is slightly acidic. 5. The embryo may never come into direct contact with either the albumen or the yolk when the pH of these fluids are high and low respectively. At the beginning of embryonic development the blastoderm is separated from the albumen by the vitelline membrane and from the yolk by a layer of subgerminal fluid with a maximum pH of about 7.8. The vitelline membrane ruptures on day 4 but by this time the embryo is bathed in amniotic fluid with a pH of about 7.5. 6. The pH of amniotic fluid falls from a maximum value of about 7.5 during week I to a minimum value of about 6.5 during week 2. Amniotic fluid is a simple solution of salts until day 12; albumen then begins to flow into the amniotic cavity and the buffering capacity of amniotic fluid increases. 7. The principal end-product of nitrogenous metabolism in the chick embryo is uric acid and about 100 mg of this substance are deposited within the allantoic cavity. The pH of allantoic fluid may exceed 7.5 during week 1 but falls to 6.0 or below after day 13. 8. The tension of carbon dioxide within the egg is determined by the ratio of the rate of carbon dioxide production by the embryo to the permeability of the shell towards carbon dioxide. For the greater part of the period of incubation the permeability of the shell towards carbon dioxide is constant. Thus, as the carbon dioxide output of the embryo increases, the carbon dioxide tension within the egg rises. 9. The pH of the blood can be defined in terms of the ratio of the bicarbonate concentration to the carbon dioxide tension. There is a progressive increase in the carbon dioxide tension of the blood during the period of incubation but the pH is maintained at about 7.4 by an increase in bicarbonate concentration. 10. Part of the increase in bicarbonate is due to the removal of hydrogen ions from carbonic acid by haemoglobin. There is also a large influx of bicarbonate into the blood, but the source of this bicarbonate is not known; the evidence that renal mechanisms are involved is inconclusive and it is probable that the embryo utilizes the enormous potential store of bicarbonate in the egg shell.  相似文献   

9.
The effects of gibberellic acid and kinetin with ethylene plus carbon dioxide on the thermodormancy of lettuce seeds (Lactuca sativa L. cv. Mesa 659) at 35 C in the dark were studied. The combination of gibberellic acid plus kinetin with ethylene plus carbon dioxide was most effective in overcoming thermodormancy in these Great Lakes type seeds, alleviating any induced light requirement. Gibberellic acid action required at least a minimal level of ethylene plus carbon dioxide. Kinetin action was independent of ethylene plus carbon dioxide but interacted with the gases when the gases were added. A schematic representation of the interaction is presented.  相似文献   

10.
The metabolism of rat retina was found to be sensitive to the concentration of the carbon dioxide-bicarbonate buffer system. Increasing the carbon dioxide from 1 per cent to 5 per cent at constant pH nearly doubled both respiration and glycolysis. Increasing the carbon dioxide at constant pH from 5 per cent to 20 per cent had no effect on glycolysis, but depressed the Q OO2 from 31 to 19. In a medium containing glucose and the 1 per cent carbon dioxide-bicarbonate buffer, the addition of succinate increased the Q OO2 from 12 to 26, without affecting glycolysis. In a medium containing glucose and phosphate, succinate had no significant effect.  相似文献   

11.
12.
The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pressure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is concluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercurrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory. The unique structure of the gas-secreting complex of the swim-bladder of the bluefish, Pomatomus saltatrix L., is described.  相似文献   

13.
The formation of microspheres from acidic and basic proteinoids was attempted under simulated prebiotic atmospheres and constituent gases thereof. Both types of proteinoid yielded microspheres under carbon dioxide, carbon monoxide, methane, hydrogen sulfide, hydrogen, nitrogen, and oxygen (tested separately) and also under nitrogen-carbon dioxide atmospheres; higher proportions of carbon dioxide resulted in fewer spheres from basic proteinoid. Neither type of proteinoid formed spheres on 10-minute exposure to ammonia or methane-hydrogen-ammonia atmospheres. (Brief exposure resulted in spheres from basic proteinoid.) The effects, both qualitative and quantitative, were indicated by control experiments to be due to pH, rather than to the specific gas (or ion). The results suggest that the proteinoid microsphere model for protocells is applicable under a variety of possible prebiotic atmospheres, with some restrictions imposed by pH.  相似文献   

14.
THE occurrence in man of drug-induced haemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes1 suggested the possibility of an analogy to the haemolysis which occurs in vitamin E deficient red blood cells. Cohen and Hochstein2 have shown that haemolysis in G6PD deficient cells is associated with the inability of the cell to generate adequate reduced glutathione (GSH) through GSSG reductase because of the impaired generation of NADPH. Moreover, there is evidence that glucose protects red blood cells from haemolysis by its ability to provide NADPH through G6PD which subsequently generates GSH3. The G6PD deficient cell, however, cannot maintain an adequate concentration of GSH in the cell, even in the presence of glucose4, whereas the normal cell can maintain a normal concentration of GSH in the presence of glucose, preserving the integrity of the red blood cell. Vitamin E protects red blood cells from haemolysis whether supplied in vivo or in vitro and its effect has usually been demonstrated without glucose in the incubation medium. Although selenium prevents many of the same deficiency symptoms as vitamin E, it has not been uniformly effective in preventing the in vitro haemolysis of red blood cells. If a protective action of selenium against haemolysis were dependent on the presence of GSH, or if selenium were involved in the generation of GSH, selenium would not be expected to prevent haemolysis unless glucose was present in the incubation medium to provide a constant source of NADPH for the generation of GSH from GSSG through GSSG reductase (Fig. 1).  相似文献   

15.
Absorption and excretion of a new tablet disintegrating agent, a crosslinked β-cyclodextrin polymer was investigated following per os administration in the rat. The polymer, which is insoluble but swells in water, was prepared from β-cyclodextrin by reacting with [2-14C]epichlorohydrin in an alkaline medium. Radioactivity of blood, urine, faeces, exhaled carbon dioxide and the gastrointestinal tract was determined by a liquid scintillation method. No radioactivity could be detected in the blood up to 24 h after the administration of the polymer. Radioactivity of urine and exhaled carbon dioxide together did not exceed 0·11% of the total administered radioactivity, 98% of which was found in the large intestine and the faeces. Therefore, it is assumed that β-cyclodextrin polymer could not be absorbed from the gastrointestinal tract.  相似文献   

16.
Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.  相似文献   

17.
The mechanism of carbon dioxide saturation of alkaline nutrient medium for the purpose of autotrophic cultivation of microalgae is studied. Carbon dioxide desorption from aqueous solutions of sodium hydrocarbonate is investigated and the influence of chemical equilibria in the solutions on the cultivation of carbon dioxide supply is discussed. It is pointed out that these solutions can be considered to be carriers of the assimilable carbon source for the microalgae cultivation, most efficient at pH 8.5. A comparative estimation of the carbon dioxide and the hydrocarbonic ion as assimilable components of the chemical equilibria under study was done, leading to the conclusion that the more probable component in an alkaline medium autotrophic microalgae cultivation is carbon dioxide. A scheme of bisource feeding of the photosynthetic process, with carbon dioxide for the autotrophic microalgae cultivation in a alkaline nutrient medium, providing a stable and economical cultivation process, is proposed.  相似文献   

18.
The reactions of ferrous ion near neutral pH are of interest because of its known presence in the Archaean oceans. We have confirmed the long wavelength ultraviolet photochemical and the thermal reactions of ferrous hydroxide to form hydrogen. We have shown that a claim of the reduction of carbon dioxide to formaldehyde at neutral pH is mistaken. By the use of14C labelled compounds, we have found that less than 1 ppm of carbon dioxide is reduced to formaldehyde and less than 10 ppm of formate ion is so reduced. The thermal reaction to form hydrogen has a small activation energy of 7 kcal mole–1. We conclude that thermal and photochemical formation of hydrogen from ferrous ion in the Archaean ocean could be comparable at pH 8–9. At lower pH, toward its limit at pH 5, the photochemical reaction would predominate. Both the thermal and photochemical reactions are specific for ferrous hydroxide, being far slower for the phosphate (>50- and 7-fold) and the bicarbonate (2- and 30-fold) complexes.  相似文献   

19.
Fatal acute haemolysis occurred in a 65-year-old man undergoing regular home haemodialysis for terminal renal failure. Circumstantial evidence indicating that the haemolysis resulted from exposure to concentrated dialysis solution was supported by in-vitro studies. Frank haemolysis in blood samples occurred at a dilution of greater than or equal to 1/2 of dialysis fluid. Osmotic fragility tests of surviving red blood cells showed 47% haemolysis at a dilution of 1/2 and greater than 90% haemolysis at a dilution of 1/1. Urgent design modifications to the proportionating machine are being undertaken to prevent such an accident recurring.  相似文献   

20.
Carbonic anhydrase studies were used to determine the primary form of carbonic acid produced from decarboxylation of l-malic acid by "malic" enzyme in malolactic strains of five different species of lactic acid bacteria. Addition of carbonic anhydrase to the reaction mixture containing crude bacterial extract and l-malic acid, at pH 7, in all five cases resulted in an increase (13 to 23%) in the rate of carbon dioxide evolution over the control. The results indicated that the primary form of carbonic acid released from "malic" enzyme was not anhydrous carbon dioxide as previously supposed and as has been shown for other decarboxylating enzymes. The standard free-energy changes of the malo-lactic reaction with the various forms of carbonic acid as the primary decarboxylation product were calculated. The reaction is less exergonic when carbonic acid, bicarbonate ion, or carbonate ion is the primary decarboxylation product compared to anhydrous carbon dioxide. The free-energy of the reaction is not biologically available to the bacteria; with carbon dioxide not the primary decarboxylation product, the potential energy lost in a malo-lactic fermentation is not as great as previously considered. Endogenous carbonic anhydrase activity was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号