首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Roots of plants growing in dry soil often experience large mechanical impedance because the decreased soil water content is associated with increased in soil strength. The combined effect of mechanical impedance and water stress hinders the establishment of seedlings in many soils, but little is known about the interaction between these two stresses. A method has been designed that, for the first time, measured the maximum axial force exerted by a root growing under controlled water stress. Using this technique the axial force exerted by a pea radicle was measured using a shear beam, while the seedling was suspended in an aerate solution of polyethylene glycol 20 000 at osmotic potentials between 0 and -0.45 MPa. The maximum growth force was then divided by the cross-sectional area of the root to give the maximum axial growth pressure. The value of maximum axial growth pressure decreased linearly from 0.66 and 0.35 MPa as the osmotic potentials of the solution of PEG decreased from 0 to -0.45 MPa. In dry soil, therefore, the maximum strength of soil that a root can penetrate is decreased because of the decrease in maximum growth pressure. The elongation rates of unimpeded roots were similar whether the roots were subject to either a matric potential in soil or to an osmotic potential in a solution of PEG.Key words: Pisum sativum L, pea, mechanical impedance, axial growth pressure, water stress, PEG 20 000.   相似文献   

3.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   

4.
We measured the osmotic pressure of diffusible myoplasmic proteins in frog (Rana temporaria) skeletal muscle fibers by using single Sephadex beads as osmometers and dialysis membranes as protein filters. The state of the myoplasmic water was probed by determining the osmotic coefficient of parvalbumin, a small, abundant diffusible protein distributed throughout the fluid myoplasm. Tiny sections of membrane (3.5- and 12-14-kDa cutoffs) were juxtaposed between the Sephadex beads and skinned semitendinosus muscle fibers under oil. After equilibration, the beads were removed and calibrated by comparing the diameter of each bead to its diameter measured in solutions containing 3-12% Dextran T500 (a long-chain polymer). The method was validated using 4% agarose cylinders loaded with bovine serum albumin (BSA) or parvalbumin. The measured osmotic pressures for 1.5 and 3.0 mM BSA were similar to those calculated by others. The mean osmotic pressure produced by the myoplasmic proteins was 9.7 mOsm (4 degrees C). The osmotic pressure attributable to parvalbumin was estimated to be 3.4 mOsm. The osmotic coefficient of the parvalbumin in fibers is approximately 3.7 mOsm mM(-1), i.e., roughly the same as obtained from parvalbumin-loaded agarose cylinders under comparable conditions, suggesting that the fluid interior of muscle resembles a simple salt solution as in a 4% agarose gel.  相似文献   

5.
A new method is proposed to derive ion distributions and the electric potential near charged surfaces. The diffuse double layer is described by a proposed thermodynamic equilibrium condition between electrostatic forces and osmotic pressure. Problems related with the osmotic pressure and the integration of Coulomb forces are investigated in this paper. A numeric example is given based on erythrocyte data.  相似文献   

6.
Lockhart , James A. (California Inst. Tech., Pasadena.) A new method for the determination of osmotic pressure. Amer. Jour. Bot. 46(10): 704–708. Illus. 1959.—A new method for the determination of osmotic pressure in appropriate plant tissues is described. This method is based on the observation that the degree of deformability of tissue equilibrated in hypertonic solution is a linear function of the extent by which the external osmotic pressure exceeds the osmotic pressure of the cell contents. Extrapolation of the deformability vs. external osmotic pressure to zero deformation yields, then, the osmotic pressure of the tissue at limiting plasmolysis. It is shown that the osmotic pressure determinations are independent of incubation time and magnitude of applied force. A simple device is described for measuring bending throughout a wide range of angles, while keeping the applied force constant.  相似文献   

7.
1. The swelling and the osmotic pressure of gelatin at pH 4.7 have been measured in the presence of a number of salts. 2. The effect of the salts on the swelling is closely paralleled by the effect on the osmotic pressure, and the bulk modulus of the gelatin particles calculated from these figures is constant up to an increase in volume of about 800 per cent. As soon as any of the salts increase the swelling beyond this point, the bulk. modulus decreases. This is interpreted as showing that the elastic limit has been exceeded. 3. Gelatin swollen in acid returns to its original volume after removal of the acid, while gelatin swollen in salt solution does not do so. This is the expected result if, as stated above, the elastic limit had been exceeded in the salt solution. 4. The modulus of elasticity of gelatin swollen in salt solutions varies in the same way as the bulk modulus calculated from the osmotic pressure and the swelling. 5. The increase in osmotic pressure caused by the salt is reversible on removal of the salt. 6. The observed osmotic pressure is much greater than the osmotic pressure calculated from the Donnan equilibrium except in the case of AlCl3, where the calculated and observed pressures agree quite closely. 7. The increase in swelling in salt solutions is due to an increase in osmotic pressure. This increase is probably due to a change in the osmotic pressure of the gelatin itself rather than to a difference in ion concentration.  相似文献   

8.
For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.  相似文献   

9.
The authors measured the osmotic stability of liposomes prepared with membrane lipids of bacteria, using the osmotic-shock release of entrapped carboxyfluorescein as an indicator. The sub-second physical changes of liposomes suspended in a solution of low osmotic pressure were examined by stopped flow spectrophotometry. The entrapped carboxyfluorescein was released when the liposomes burst on inflow of excess water. Liposomes prepared with the lipids of a stable Staphylococcus aureus L-form strain were more resistant to low osmotic pressure than those prepared from the wild strain of S. aureus, and liposomes prepared from Mycoplasma orale were even more resistant. Cardiolipin enhanced the lipid membrane stability in S. aureus and cholesterol in M. orale. The stability of lipid membranes to low osmotic pressure could be precisely determined by the present method.  相似文献   

10.
The isopiestic method was used to determine the osmotic pressure of sucrose, glucose, ethylene glycol, potassium chloride and sodium sulphate solutions used to raise the osmotic pressure of cultivation media. The method is suitable for determining π of concentrated solutions. In solutions with NaCl concentrations of less than 0.1m, the accuracy of the method fell because of the relatively high water surface tension and the low vapour pressure. The osmophilic character ofCandida utilis yeasts adapted to dense recirculated molasses mashes was studied by cultivation on synthetic medium whose osmotic pressure was raised by adding mineral salts and organic substances.  相似文献   

11.
In the paper, we present an improved method for evaluation of a compound ability to destabilize erythrocyte plasma membrane. The proposed method is based on the continuous monitoring of the light scattered by erythrocytes exposed to osmotic pressure differences. The kinetics of hemolysis depends on the plasma membrane mechanics and the extent of the osmotic stress. Generally, the osmotic pressure difference of approximately 150 mOsm is taken for measurements, as a result of the equal volume mixing with the physiological salt solutions. In this approach the hemolytic process completion is not established which may result in poor quality and reproducibility of the experimental data. In consequence, inaccurate parameters of the kinetic are determined due to the low quality fitting to the, widely used, single exponential model. In the paper we propose a new experimental protocol allowing to determine the extended set of parameters for kinetics of hemolysis. Namely, the method of the minimal osmotic pressure difference determination is proposed which ensures the completeness of the hemolytic process. This step allows improving the quality and exactness of the calculated parameters. The developed methodology was tested on two qualitatively different, biologically relevant, experiments; evaluation of the peptide effect on the plasma membrane properties and differentiating between human and rabbit erythrocytes.  相似文献   

12.
The influences of two water soluble contrast media, meglumine iothalamate and meglumine iocarmate, on the neuronal excitability and on the neuronal sensitivity to putative transmitters were examined in comparison with those of sucrose using two identifiable giant neurones of Achatina fulica Férussac (the TAN and the PON). A relatively low increase of osmotic pressure of the extracellular fluid, produced by the application of contrast media, reversed the Cl- dependent inhibition caused by a putative transmitter. The same increase of this osmotic pressure, however, did not influence the Cl- independent inhibition and the excitation of the neurone examined. The hyperpolarization of neuromembrane was caused by an increase of osmotic pressure of the extracellular fluid. Its relatively high increase was necessary to make spontaneous spike discharges disappear totally. All effects of the two contrast media, observed in this study, were due to the increase of osmotic pressure of the extracellular fluid ; no specific effect of the contrast media containing the iodine on the indicators used was observed.  相似文献   

13.
本实验室前期在高渗条件下筛选得到8个转录因子,其中ACZ (SI65-00458)基因表达量最高,推测ACZ基因在冠突曲霉中参与响应渗透压及调控孢子的产生。因而本研究利用同源重组原理,构建了ACZ基因敲除载体,通过农杆菌介导转化,筛选获得了ACZ敲除菌株,将敲除株分生孢子液接种在含不同浓度NaCl的MYA培养基上,以野生型冠突曲霉为对照,观察敲除株与野生型菌株的区别。研究发现:培养基中不加NaCl时色素有明显变化,野生型为黄色,敲除株为褐黄色;在低渗透压下,菌落边缘不规则;在高渗透压下,敲除株产生的分生孢子数量为野生型的4倍多;无论是在27℃还是在37℃培养,敲除株在低渗及高渗条件下,菌落直径都较野生型小,菌丝较稀疏。表明敲除ACZ基因会影响冠突曲霉菌丝生长、色素的合成及孢子的产生。  相似文献   

14.
Positive third virial coefficients and osmotic coefficients have been calculated for human umbilical cord hyaluronic acid solutions at pHs 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 and constant ionic strength 0.1. The calculations are based on experimental axial flow birefringence and radial linear dichroism data previously reported and the Lifshitz-McLachlan field theory of van der Waals forces. The second virial coefficients are negative, according to both this analysis and light scattering evidence, and reflect the tendency of hyaluronic acid to associate. This negativity denies the assumption of force additivity required by virial expansion theory.The results are in reasonable agreement with those of light scattering studies, and indicate the extreme nonideality of hyaluronate solutions with a high degree of pH control of osmotic pressure. The data are explained within the context of statistical mechanical and field theories of van der Waals forces, and the osmotic pressure of a solution is related to its optical properties. The numerical method used offers a way of exploring the applicability of modern interparticle force theory to biological systems.  相似文献   

15.
Phytoactivity and allelopathic studies are heavily dependent on germination bioassays of water solutions of allelochemical(s), which necessarily imply that pH and osmotic pressure vary among treatments and between treatments and controls and are therefore a confounding factor in the assessment of seed germination responses to allelochemical(s). When the contribution of pH and osmotic pressure to seed germination responses is considered in experimental designs their effects are almost without exceptions examined separately being assumed, without any evidences, that pH and osmotic pressure act independently on seed germination responses. The objectives of this work were to examine experimentally such assumption using wheat, lettuce, and subterranean clover cultivars to evaluate and model the combined effects on germination of pH and osmotic pressure in the range between 3.0–6.0 and 0–100 mOsmol kg?1, respectively. Empirical equations are fitted, discussed, and the need to consider the simultaneous effects of pH and osmotic pressure firmly established. Finally, the use of the equations fitted and its impact on conclusions is exemplified in a dose-response bioassay of water extracts of Cistus ladanifer on seed germination using subterranean clover as target species where hormesis was found before allelochemical effects were corrected for pH and osmotic pressure values of control and extracts.  相似文献   

16.
Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.  相似文献   

17.
Protein folding and conformational changes are influenced by protein-water interactions and, as such, the energetics of protein function are necessarily linked to water activity. Here, we have chosen the helix-coil transition in poly(glutamic acid) as a model system to investigate the importance of hydration to protein structure by using the osmotic stress method combined with circular dichroism spectroscopy. Osmotic stress is applied using poly(ethylene glycol), molecular weight of 400, as the osmolyte. The energetics of the helix-coil transition under applied osmotic stress allows us to calculate the change in the number of preferentially included water molecules per residue accompanying the thermally induced conformational change. We find that osmotic stress raises the helix-coil transition temperature by favoring the more compact α-helical state over the more hydrated coil state. The contribution of other forces to α-helix stability also are explored by varying pH and studying a random copolymer, poly(glutamic acid-r-alanine). In this article, we clearly show the influence of osmotic pressure on the peptide folding equilibrium. Our results suggest that to study protein folding in vitro, the osmotic pressure, in addition to pH and salt concentration, should be controlled to better approximate the crowded environment inside cells.  相似文献   

18.
A simple osmotic method has been developed to determine the internal K+ concentration of mitochondria by determining the concentration of external K+ at constant osmotic pressure at which metabolically inhibited mitochondria neither shrink nor swell. This concentration has been found to correspond to approx. 80-85 mM in freshly isolated mitochondria and considerably lower after additional centrifugation procedures. Since mitochondria are in osmotic equilibrium with the suspending medium (in this case, 0.32 osmolal), and K+ is the primary exchangeable internal ion, a significant proportion of the internal osmotic pressure must be exerted by the sucrose. Results for experiments determining internal K+ after centrifuging mitochondria at various G values confirm the reports of Sitaramam et al. (Sitaraman, V. and Sarma, M.K.J. (1981) Proc. Natl. Acad. Sci. USA 78, 3441-3445 and Sambasivarao, D. and Sitaramam, V. (1983) Biochim. Biophys. Acta 722, 256-270) that centrifugation induces the entry of sucrose in mitochondria isolated in a sucrose medium.  相似文献   

19.
The osmotic pressure of the body fluids of aphids is lower than in their diet of plant phloem sap. It is hypothesised that aphids reduce the osmotic pressure of ingested food by sucrase-mediated hydrolysis of dietary sucrose to glucose and fructose, and the polymerisation of glucose into oligosaccharides of low osmotic pressure per hexose unit. To test this hypothesis, the impact of the alpha-glucosidase inhibitor acarbose on the sugar relations and osmoregulation of aphids was explored. Acarbose inhibited sucrase activity in gut homogenates and the production of monosaccharides and oligosaccharides in the honeydew of live aphids. Acarbose caused an increase in the haemolymph osmotic pressure for aphids reared on a diet (containing 0.75 M sucrose) hyperosmotic to the haemolymph and not on the isoosmotic diet containing 0.2 M sucrose. It did not affect aphid feeding rate over 2 days, except at high concentrations on 0.75 M sucrose diet, and this may have been a secondary consequence of osmotic dysfunction. Acarbose-treated aphids died prematurely. With 5 microM dietary acarbose, mean survivorship on 0.2 M sucrose diet was 4.2 days, not significantly different from starved aphids, indicating that, although these aphids fed, they were deprived of utilisable carbon; and on 0.75 M sucrose diet, mean survivorship was just 2.8 days, probably as a consequence of osmotic failure. It is concluded that the aphid gut sucrase activity is essential for osmoregulation of aphids ingesting food hyperosmotic to their body fluids.  相似文献   

20.
Han IS  Han MH  Kim J  Lew S  Lee YJ  Horkay F  Magda JJ 《Biomacromolecules》2002,3(6):1271-1275
A new type of biosensor is proposed that combines the recognition properties of "intelligent" hydrogels with the sensitivity and reliability of microfabricated pressure transducers. In the proposed device, analyte-induced changes in the osmotic swelling pressure of an environmentally responsive hydrogel are measured by confining it within a small implantable enclosure between a rigid semipermeable membrane and the diaphragm of a miniature pressure transducer. Proof-of-principle tests of this device were performed in vitro using pH-sensitive hydrogels, with osmotic deswelling data for the same hydrogels used as a benchmark for comparison. The swelling pressure of the hydrogel was accurately determined from osmotic deswelling measurements against reservoirs of known osmotic stress. Values of swelling pressure vs salt concentration measured with a preliminary version of the sensor agree well with osmotic deswelling results. Through modification of the hydrogel with various enzymes or pendant binding moieties, the sensor has the potential to detect a wide range of biological analytes with good specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号