首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary cultures of purified astroglia have been shown to exhibit a variety of membrane receptors that regulate intracellular cyclic AMP levels. The experiments described in this paper were completed to examine the effect of such receptor agonists on protein phosphorylation in intact astroglia. An analysis of 32P-labelled proteins derived from whole cell extracts and separated via two-dimensional gel electrophoresis indicated that increasing cyclic AMP levels in astroglia stimulated the phosphorylation of two distinct proteins that had apparent molecular weights/isoelectric points (pI) of 51K/6.0 and 57K/5.7. Similar experiments with cultured meningeal cells indicated that only the 57K/5.7 protein was phosphorylated in response to elevated levels of cyclic AMP. The 51K/6.0 protein was never observed in gels derived from meningeal cells. Immunoblot experiments indicated that the 51K/6.0 protein stained with antiserum to glial fibrillary acidic protein (GFAP) and the 57K/5.7 protein stained with antibodies to vimentin. Concentration-effect studies indicate that these proteins are maximally phosphorylated at concentrations of receptor agonists that only slightly elevate cyclic AMP levels. All receptor agonists that have been shown to increase cyclic AMP levels appear similarly efficacious with respect to increasing the phosphorylation of the two proteins. These experiments suggest that the membrane receptors present on astroglia function, in part, to regulate phosphorylation of the intermediate filament proteins GFAP and vimentin.  相似文献   

2.
The expression of glial fibrillary acidic protein (GFAP)-mRNA during mouse brain development and in astroglial primary cultures has been investigated by using two approaches: Northern-blot evaluation using a specific cDNA probe, and cell-free translation associated with immunoprecipitation. During brain maturation (4-56 days postnatal), the GFAP-mRNA underwent a biphasic evolution. An increase was observed between birth and day 15 (i.e., during the period of astroglial proliferation), which was followed by a decrease until day 56 (i.e., during astroglial cell differentiation). At older stages (300 days), an increase was observed, which might reflect gliosis. During astroglial in vitro development (7-32 days in culture), the GFAP-mRNA showed similar variations. An increase, observed during the period of astroglial proliferation (7-18 days), was followed by a decrease which occurred in parallel to marked changes in cell shape, cell process outgrowth, and the organization and accumulation of gliofilaments. During the same culture period (7-32 days), alpha-tubulin mRNA, which was used as an internal standard, did not vary significantly. These results show that the increase of the GFAP protein and of gliofilaments observed both in vivo and in vitro during astroglial differentiation cannot be ascribed to an accumulation of the GFAP-mRNA. It might be that more than one mechanism regulates the levels of free and polymerized GFAP and of its encoding mRNA.  相似文献   

3.
Intermediate filament (IF) proteins from rat spinal cord were analyzed by two-dimensional gel electrophoresis and compared with the in vitro translation products of a messenger RNA-dependent reticulocyte lysate system stimulated with 16-day-old rat brain polysomes. In two dimensions, the molecular weight 49,000 to 50,000 band of the IF preparation resolved to seven spots, whereas antiserum to glial fibrillary acidic (GFA) protein precipitated only two immediately adjacent radiolabeled in vitro synthesized products, with molecular weights of 49,000 to 50,000. Autoradiographs of two-dimensional gels of extracted IF proteins incubated with iodinated IgG fraction of GFA protein antiserum showed that all seven spots were recognized by the antiserum. These observations suggest that the primary gene product of GFA protein is modified either by post-translational processing or experimental artifact.  相似文献   

4.
Synthesis and Turnover of Cytoskeletal Proteins in Cultured Astrocytes   总被引:17,自引:10,他引:7  
Abstract: We previously reported that the cytoskeleton of rat astrocytes in primary culture contains vimentin, glial fibrillary acidic protein (GFAP), and actin. These proteins were found in a fraction insoluble in Triton X-100 and thought to be assembled in filamentous structures. We now used primary astrocyte cultures to study the kinetics of synthesis and turnover of these cytoskeletal proteins. The intermediate filament proteins were among the most actively synthesized by astrocytes. High levels of synthesis were detectable by the third day of culture in the early log phase of growth, and the pattern of labeling at day 3 was similar to that at 14 days when the cultures had reached confluency. In short-term incorporation experiments vimentin, GFAP, and actin in the Triton-insoluble fraction were labeled within 5 min after exposure of the cultures to radioactive leucine. We did not detect any saturation of labeling for up to 6 h of incubation. The turnover of filament proteins studied by following the decay of radioactivity from prelabeled vimentin, GFAP, and cytoskeletal actin displayed biphasic decay kinetics for all three proteins. In the initial phase a fast-decaying pool with a half-life of 12–18 h contributed about 40% of the total activity in each protein. A major portion, about 60%, of each protein, however, decayed much more slowly, exhibiting a half-life of about 8 days.  相似文献   

5.
Abstract: We examined correlations among growth kinetics, cell shape, and cytoskeletal protein content in rat astrocytes grown in primary culture. Cell suspensions from brains of newborn rats were seeded at densities from 0.2 to 3 × 105/cm2. At initial densities above 1 × 105 the population increased to reach confluency by 10–12 days, after which cell number remained stable for many weeks. At low initial densities, 0.2–0.4 × 105/cm2, cells did not increase in number. Final density increased with increasing plating densities. High-density cells had small perikarya and several long cytoplasmic processes; low-density cells appeared flat and polygonal. All cultures were almost entirely astrocytic, as judged by immunofluorescent staining with antiserum against glial fibrillary acidic protein (GFAP). Cytoskeletal proteins were analyzed by gel electrophoresis after extraction from cells with nonionic detergent. Relative amounts of the proteins differed, in that low-density cells contained large amounts of cytoskeletal actin relative to the intermediate filament (IF) proteins vimentin and GFAP, whereas high-density cells contained relatively less actin and more IF proteins. Such differences in cytoskeletal proteins between the high- and low-density cultures were mirrored in the relative rates of synthesis of the cytoskeletal proteins. In the low-density cells amino acid incorporation into cytoskeletal-associated actin was more active than that into the IFs, whereas in the high-density cells higher rates of IF protein synthesis were observed.  相似文献   

6.
We examined the patterns of cyclic AMP-dependent protein phosphorylation in membranes prepared from rat cortical synaptosomes following gel electrophoresis and autoradiography. We determined the optimum pH (6.2), time (20 s), Mg2+ concentration (10 mM) and cyclic AMP concentration (5 microM) for the reaction. We also found that the detergents Triton X-100 and gramicidin S enhanced cyclic AMP-dependent protein phosphorylation. Inhibitors of the Na+, K+ ATPase (ouabain, NaF, vanadate) enhanced protein phosphorylation. This effect occurred in the presence but not in the absence of detergent. The addition of purified bovine brain cyclic AMP-dependent protein kinase catalytic subunit enhanced membrane protein phosphorylation. The addition of homogeneous neural (bovine brain) and non-neural (bovine skeletal muscle) cyclic AMP-dependent protein kinase type II regulatory subunit partially inhibited protein phosphorylation. Both neural and non-neural regulatory subunits behaved similarly. In addition to cyclic AMP-dependent phosphorylation, the alpha-subunit of pyruvate dehydrogenase (Mr = 41,000) is phosphorylated in a cyclic AMP-independent fashion. We also examined the phosphorylation pattern of membranes prepared from rat heart and found that the number of acceptor substrates was much less than that from the nervous system.  相似文献   

7.
Abstract: Coelectrophoresis in two-dimensional gels of rat glial fibrillary acidic protein (GFA) and 32P-labeled whole cell extracts of rat C-6 glioma cells showed that the GFA migrated in close proximity to a previously noted phosphoprotein, 50K-6.1, of these cells. GFA electrophoresed as a 50K polypeptide with at least four charge variants, the most acidic of which coelectrophoresed with 50K-6.1. Exposure of the C-6 cultures to dibutyryl cyclic AMP (dbcAMP) for 48 h increased the relative abundance of the endogenous polypeptide associated with 50K-6.1 by threefold, consistent with the hypothesis that 50K-6.1 was GFA. Norepinephrine stimulated 50K-6.1 phosphorylation 3.2-fold in dbcAMP-induced cultures. Peptide mapping with V8 protease and subtilisin was used to test the hypothesis that GFA and 50K-6.1 were identical polypeptides. With V8 protease, the peptides generated from the [35S]methionine labeled putative GFA spot of the C-6 cells were indistinguishable from the stained bands derived from authentic GFA in mixed samples of the two proteins. Likewise, the 35S-labeled acidic satellite to the putative GFA spot also yielded a peptide map that matched that of the authentic GFA. 32P-labeled peptides derived from the 50K-6.1 protein were a subset of those from authentic GFA. With three subtilisin concentrations, 32P-labeled 50K-6.1 was degraded to peptides which were again a subset of the stained GFA peptides. A cytoskeletal fraction from 32P-labeled C-6 cells contained a 50K phosphoprotein. Pep-, tide mapping with V8 protease produced a 32P-peptide pattern which was a subset of that from authentic GFA. The pattern closely resembled the 32P-peptide pattern for the 50K-6.1 protein from 2-dimensional gels of whole cell extract. It was concluded that the protein 50K-6.1 is a phosphorylated form of GFA and that GFA is a phosphoprotein whose phosphòrylation is stimulated by norepinephrine in C-6 glioma cells.  相似文献   

8.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

9.
Abstract: The biosynthesis of brain intermediate filament proteins [neurofilament proteins and glial fibrillary acidic protein (GFA)] was studied with cell-free systems containing either rat spinal cord polysomes (free polysomes or rough microsomes) and rabbit reticulocyte factors or wheat germ homogenate containing spinal cord messenger RNA. The products of translation were isoated by immunoaffinity chromatography and then analyzed by two-dimensional gel electrophoresis (2DGE) followed by fluorography. The free polysome population was found to synthesize two neurofilament proteins (MW 145K, p15.4, and MW 70K, pl 5.3) and three isomers of GFA (α, β, and γ) that differ in isoelectric point. Wheat germ homogenate containing messenger RNA extracted from free cord polysomes synthesized two proteins that comigrated with neurofilament protein standards at 145K 5.4 and 70K 5.3; these proteins were partially purified by neurofilament affinity chromatography. The wheat germ system also synthesized the α, β, and γ isomers of GFA as characterized by immunoaffinity chromatographic purification and comigration with standards in 2DGE analysis. Our data are consistent with the conclusion that synthesis of neurofilament proteins requires multiple messenger RNAs. Also, synthesis of intermediate filament proteins occurs in the free polysome population; detectable amounts of these proteins were not synthcsized by the rough microsomes.  相似文献   

10.
Abstract: Primary astrocytes were cultured from the forebrains of 1-day-old rats. Immunofluorescence microscopy showed that approximately 80% of the cells were positive for glial fibrillary acidic protein (GFAP) and >80% were stained with an antiserum to the molecular weight 58,000 fibroblast intermediate filament protein (vimentin). Gel electrophoresis of Triton-insoluble cytoskeleton preparations from these cultures revealed three major bands having molecular weights of 58,000, 51,000, and 42,000, together with some prominent lower-molecular-weight species. The protein of molecular weight 51,000 was not present in preparations from fibroblasts. Each of the three major astrocyte proteins was subjected to limited proteolysis, while two of the proteins were cleaved by cyanogen bromide. The electrophoretic peptide patterns of the 58,000 protein were similar to those of vimentin isolated from NIL-8 fibroblasts, and the patterns of the 51,000 protein were similar to those of GFAP isolated from rat spinal cord. The patterns of the protein of molecular weight 42,000 resembled those of muscle actin. Rocket immunoelectrophoresis showed that the 51,000 astrocyte protein reacted with an antiserum to bovine GFAP, but the 58,000 and 42,000 proteins failed to react. We conclude that the major proteins of cytoskeleton preparations from cultured primary astrocytes are vimentin (58,000), GFAP (51,000), and actin (42,000), and that our data show no obvious structural relationship among them.  相似文献   

11.
Abstract: We studied the effect of treating rats with lithium salts on the content and in vitro phosphorylation rate of the astrocyte cell marker, glial fibrillary acidic protein (GFAP), in brain slices. Rats were fed a diet incorporating lithium chloride until the concentration of Li+ in serum reached 0.6–1.2 m M , a range similar to that achieved in clinical practice. Hippocampal tissue was analyzed for immunoreactive GFAP by a dot assay, and slices of hippocampus and caudate nucleus were labeled with [32P]-phosphate to determine the in vitro rate of phosphorylation of GFAP. Compared with controls, the level of immunoreactive GFAP in the hippocampus from lithium-treated rats was increased 34%, and GFAP in hippocampal slices incorporated 39% more 32P. This effect of lithium was apparently not confined to the hippocampus because the in vitro rate of phosphorylation of GFAP in caudate slices was also increased in the treated rats.  相似文献   

12.
Turnover of Glial Filaments in Mouse Spinal Cord   总被引:3,自引:2,他引:1  
Twenty-day-old mice received a single tail vein injection of [guanido-14C]arginine. The cytoskeleton was extracted from the spinal cords at varying lengths of time thereafter. Glial fibrillary acidic protein (GFAP) formed a distinct, broad band that was widely separated from other protein bands in one-dimensional polyacrylamide gels. The purity of the GFAP band was verified by Western blot analysis of one- and two-dimensional electrophoretic patterns. In addition, enzyme-linked immunosorbent assay and quantitative Western blot analysis indicated that 95% of the total spinal cord GFAP was extracted in the cytoskeletal preparation. The specific activity of GFAP was obtained by eluting the protein from the cytoskeletal GFAP band in preparative one-dimensional gels. Specific activity reached a peak 2 h after injection with [14C]arginine. Forty percent of the incorporated radioactivity was still present in cytoskeletal GFAP at 9 weeks, indicating that a significant proportion of glial filaments turns over relatively slowly in vivo.  相似文献   

13.
Glial fibrillary acidic protein (GFA) expression was induced in rat C6 glioma in chemically defined medium by the addition of N6, O2'-dibutyryl cyclic AMP (dbcAMP). Induction was dependent on the increase in intracellular cyclic AMP (cAMP), which was linearly correlated with added dbcAMP. Contrary to GFA mRNA synthesis, which can be obtained by cAMP-dependent and -independent pathways, translation of mRNA into GFA was observed only above a cellular cAMP concentration of approximately 0.2 fmol/cell. dbcAMP stimulation did not affect the vimentin concentration, which remained at a low level, but changed the cellular morphology from a bipolar to a stellate shape. A similar morphological change was observed after stimulation of C6 with lipopolysaccharide (LPS). However, LPS did not significantly increase the intracellular concentration of cAMP and the LPS-induced mRNA was not translated into GFA. Our results indicate that GFA synthesis is regulated at the mRNA level and at the translational level and that a cAMP-dependent mechanism determines the ultimate synthesis of GFA by a yet unknown mechanism.  相似文献   

14.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The expression of intermediate filaments is developmentally regulated. In the mammalian embryo keratins are the first to appear, followed by vimentin, while the principal intermediate filament of the adult brain is glial fibrillary acidic protein. The intermediate filaments expressed by a cell thus reflect its state of differentiation. The differentiation state of cells, and especially of glial cells, in turn determines their ability to support axonal growth. In this study we used three new antibodies directed against three fish intermediate filaments (glial fibrillary acidic protein, keratin 8 and vimentin), in order to determine the identity and level of expression of intermediate filaments present in fish glial cells in culture. We found that fish astrocytes and oligodendrocytes are both able to express keratin 8 and vimentin. We further demonstrate that under proliferative conditions astrocytes express high keratin 8 levels and most oligodendrocytes also express keratin 8, whereas under nonproliferative conditions the astrocytes express only low keratin 8 levels and most oligodendrocytes do not express keratin 8 at all. These results suggest that the fish glial cells retain characteristics of immature cells. The findings are also discussed in relation to the fish glial lineage.  相似文献   

16.
Neurofilaments (NF) and glial filaments (GF) were purified from bovine brain by the axonal flotation method, followed by hydroxylapatite chromatography in 8 M-urea. The proteins were shown to be competent to reassemble into intermediate filaments with removal of the denaturant, and reassembly was used as the final step in the purification of the filament proteins. The reassembly was found to be dependent on ionic strength and pH. This dependence was greater for neurofilaments than for the glial filaments. The NF and GF preparations were found not to be contaminated with each other by their gel electrophoretic profile and their immunological distinctness. The filament proteins can be obtained in high yield, and remain in solution if the urea is removed by dialysis against a low-ionic-strength buffer. Hence, they can provide a source for further biochemical studies.  相似文献   

17.
The effects of the naturally occurring polyamines spermine and spermidine on phosphorylation promoted by cyclic AMP (cAMP)-dependent protein kinase (PK) (cAMP-PK; EC 2.7.1.37) were studied using the brain of the tobacco hornworm, Manduca sexta. Four particulate-associated peptides (280, 34, 21, and 19 kilodaltons) in day 1 pupal brains are endogenous substrates for a particulate type II cAMP-PK. These phosphoproteins are present in brain synaptosomal, as well as microsomal, particulate fractions but are not present in the cytosol. They are distributed throughout the CNS and PNS and are present in several nonneuronal tissues as well. Phosphorylation of these proteins via cAMP-PK was inhibited markedly by micromolar concentrations of spermine and spermidine. Other particulate-associated peptides phosphorylated via a Ca2+/calmodulin-PK or Ca2+ and cAMP-independent PKs were unaffected by polyamines, whereas the phosphorylation of a 260-kilodalton peptide was markedly enhanced. Spermine did not exert its inhibitory effect indirectly by enhancement of cAMP or ATP hydrolysis or via proteolysis, but its action appears to involve a substrate-directed inhibition of cAMP-PK-promoted phosphorylation as well as enhanced dephosphorylation. Although addition of spermine resulted in marked ribosome aggregation in synaptosomal and microsomal particulate fractions, this phenomenon was not involved in the inhibition of cAMP-PK-promoted phosphorylation.  相似文献   

18.
Abstract: In the present study, changes in the content of glial fibrillary acidic protein (GFAP) in mouse cortex were investigated at different time intervals after unilateral middle cerebral artery occlusion. The GFAP content was assessed semiquantitatively by ELISA and immunoblotting. GFAP immunoreactivity was determined for each animal separately in protein fractions obtained from the ipsilateral, lesioned cortex and the contralateral, unlesioned cortex. Changes in the GFAP content of the lesioned cortex with respect to that of the unlesioned cortex were calculated for each fraction individually. GFAP was detectable in all protein fractions with a significant amount recovered from the aqueous extracts. A pronounced increase in the GFAP content of the lesioned cortex was observed. As measured by ELISA, this increase was maximal 5 days after injury and significantly more pronounced for the soluble and the Triton X-100-soluble protein fractions (mean increase 7 days after lesion, 281.4 and 240.2%, respectively) than for the crude cytoskeletal fraction (mean increase, 153.3%). A small and transient increase in GFAP immunoreactivity was also found in all protein fractions prepared from the contralateral, unlesioned cortex. These results were confirmed by immunoblotting.  相似文献   

19.
Abstract: The cellular functions of the intermediate filament family including glial fibrillary acidic protein (GFAP) are not well known yet beyond their roles as structural elements of cells. Expression of GFAP, which is specific in astrocytes and regulated developmentally, suggests its involvement in cell growth and differentiation of astrocytes. We transfected murine GFAP cDNA into a rat astrocytoma C6 cell line to assess the specific effect of GFAP on cells. Two stable GFAP-transfected cell lines, GFC6-5 and GFC6-6, exhibited a series of morphological and growth characteristics that distinguish them from their counterparts, i.e., NeoC6 cells transfected only with the neomycin-resistant gene, and native C6 cells. Both GFC6-5 and GFC6-6 cells showed elongated cell shapes with extended processes rich in GFAP, markedly suppressed cell growth, and decreased bromodeoxyuridine uptake. Western blot analysis revealed a remarkable increase of GFAP expression in GFC6-5 and GFC6-6 compared with that in NeoC6 and C6, in contrast to similar vimentin expression in all cell lines. The results indicate that the expression of GFAP has dramatic effects on cell morphology and cell growth suppression in C6 cells, suggesting that GFAP may function as a tumor suppressor in astrocytoma.  相似文献   

20.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号