首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca(2+) oscillations are required in various signal trans duction pathways, and contain information both in their amplitude and frequency. Remarkably, the Ca(2+)/calmodulin(CaM)-dependent protein kinase II (CaMKII) can decode such frequencies. A Ca(2+)/CaM-stimulated autophosphorylation leads to Ca(2+)/CaM-independent (autonomous) activity of the kinase that outlasts the initial stimulation. This autonomous activity increases exponentially with the frequency of Ca(2+) oscillations. Here we show that three beta-CaMKII splice variants (beta(M), beta and beta(e)') have very similar specific activity and maximal autonomy. However, their autonomy generated by Ca(2+) oscillations differs significantly. A mechanistic basis was found in alterations of the CaM activation constant and of the initial rate of autophosphorylation. Structurally, the splice variants differ only in a variable 'linker' region between the kinase and association domains. Therefore, we propose that differences in relative positioning of kinase domains within multimeric holoenzymes are responsible for the observed effects. Notably, the beta-CaMKII splice variants are differentially expressed, even among individual hippocampal neurons. Taken together, our results suggest that alternative splicing provides cells with a mechanism to modulate their sensitivity to Ca(2+) oscillations.  相似文献   

2.
Gu Q  Jin N  Sheng H  Yin X  Zhu J 《PloS one》2011,6(11):e25745
Ca(2+)/calmodulin-dependent protein kinase (CaMK) IIδ is predominantly expressed in the heart. There are three isoforms of CaMKIIδ resulting from the alternative splicing of exons 14, 15, and 16 of its pre-mRNA, which is regulated by the splicing factor SF2/ASF. Inclusion of exons 15 and 16 or of exon 14 generates δA or δB isoform. The exclusion of all three exons gives rise to δC isoform, which is selectively increased in pressure-overload-induced hypertrophy. Overexpression of either δB or δC induces hypertrophy and heart failure, suggesting their specific role in the pathogenesis of hypertrophy and heart failure. It is well known that the β-adrenergic-cyclic AMP-dependent protein kinase A (PKA) pathway is implicated in heart failure. To determine the role of PKA in the alternative splicing of CaMKIIδ, we constructed mini-CaMKIIδ genes and used these genes to investigate the regulation of the alternative splicing of CaMKIIδ by PKA in cultured cells. We found that PKA promoted the exclusion of exons 14, 15, and 16 of CaMKIIδ, resulting in an increase in δC isoform. PKA interacted with and phosphorylated SF2/ASF, and enhanced SF2/ASF's activity to promote the exclusion of exons 14, 15, and 16 of CaMKIIδ, leading to a further increase in the expression of δC isoform. These findings suggest that abnormality in β-adrenergic-PKA signaling may contribute to cardiomyopathy and heart failure through dysregulation in the alternative splicing of CaMKIIδ exons 14, 15, and 16 and up-regulation of CaMKIIδC.  相似文献   

3.
Calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and concomitantly deactivates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs), such as CaMKI, CaMKII, and CaMKIV. In the present study, a nuclear CaMKP-related protein, CaMKP-N, was identified. This protein consisted of 757 amino acid residues with a calculated molecular weight of 84,176. Recombinant CaMKP-N dephosphorylated CaMKIV. The activity of CaMKP-N requires Mn(2+) ions and is stimulated by polycations. Transiently expressed CaMKP-N in COS-7 cells was localized in the nucleus. This finding together with previous reports regarding localization of CaMKs indicates that CaMKP-N dephosphorylates CaMKIV and nuclear CaMKII, whereas CaMKP dephosphorylates CaMKI and cytosolic CaMKII.  相似文献   

4.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   

5.
Okamoto H  Ichikawa K 《Bio Systems》2000,55(1-3):65-71
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information.  相似文献   

6.
The Ca(2+)/calmodulin-dependent kinase CaMKII is a key signaling component in Ca(2+)-dependent physiological processes. The expression and function of CaMKII in insect brain is well documented but less investigated for other tissues of insects. The present study demonstrates that in the locust Locusta migratoria CaMKII is widely expressed in various tissues. Relatively high expression levels of CaMKII were found in the brain, upper part of the digestive tract (pharynx, esophagus), and the flight and leg muscles. The different expression patterns of CaMKII in various tissues, as well as different molecular masses of CaMKII between 48 and 60 kDa indicate a tissue-specific expression of CaMKII variants. The expression was monitored with a polyclonal anti-(rat)CaMKII antibody. About 60% of total CaMKII activity in flight muscle cells is associated to the myofibril-rich, particulate fraction suggesting an important role of CaMKII in sarcomeric function.  相似文献   

7.
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-d-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKIIalpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca(2+)/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca(2+)/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca(2+)-independent autophosphorylation or Ca(2+)/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKIIalpha with NR2B requires either Thr(286) autophosphorylation or the binding of both Ca(2+)/calmodulin and adenine nucleotides. NR2B inhibits both the Ca(2+)/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in finetuning CaMKII signaling in defined subcellular compartments.  相似文献   

8.
9.
10.
L-type Ca(2+) channels (LTCCs) are major entry points for Ca(2+) in many cells. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is associated with cardiac LTCC complexes and increases channel open probability (P(O)) to dynamically increase Ca(2+) current (I(Ca)) and augment cellular Ca(2+) signaling by a process called facilitation. However, the critical molecular mechanisms for CaMKII localization to LTCCs and I(Ca) facilitation in cardiomyocytes have not been defined. We show CaMKII binds to the LTCC beta(2a) subunit and preferentially phosphorylates Thr498 in beta(2a). Mutation of Thr498 to Ala (T498A) in beta(2a) prevents CaMKII-mediated increases in the P(O) of recombinant LTCCs. Moreover, expression of beta(2a)(T498A) in adult cardiomyocytes ablates CaMKII-mediated I(Ca) facilitation, demonstrating that phosphorylation of beta(2a) at Thr498 modulates native calcium channels. These findings reveal a molecular mechanism for targeting CaMKII to LTCCs and facilitating I(Ca) that may modulate Ca(2+) entry in diverse cell types coexpressing CaMKII and the beta(2a) subunit.  相似文献   

11.
Ca(2+)/calmodulin-dependent protein kinase (CaMK) family is responsive to changes in the intracellular Ca(2+) concentration. However, their functions have not been well established in the ischemia/reperfusion heart. The effects of myocardial ischemia on CaMKII, the most strongly expressed form, were investigated using isolated rat hearts. Rat hearts were rendered globally ischemic by stopping perfusion for 15 min, and then reperfused, heart ventricles being analyzed in each phase. Western blotting detected a decrease in the cytosolic and concomitant increase in the particulate fraction of CaMKII following transient ischemia. Redistribution to the cytosol was revealed on reperfusion. Northern blot showed CaMKII gene expression decreased by ischemia. Furthermore, autoradiography and confocal immunohistochemical findings provided autophosphorylation of CaMKII in the cytosol, ischemia causing decrease, with gradual recovery on reperfusion. These results indicate a transient partial translocation of CaMKII accompanied by kinase activity, with residual myocardial CaMKII undergoing autophosphorylation during ischemia and reperfusion, demonstrating two different characteristic dynamics of CaMKII.  相似文献   

12.
13.
Ca2+/calmodulin-dependent protein kinase (CaMK)II is highly expressed in the CNS and mediates activity-dependent neuronal plasticity. Four CaMKII isoforms, alpha, beta, gamma and delta, have a large number of splicing variants. Here we identified isoforms of CaMKII in the rat substantia nigra (SN). Northern blot and RT-PCR analyses revealed that the gamma and delta isoform mRNAs with several splicing variants were predominantly expressed in SN. Immunoblot analysis indicated that the major isoforms were gammaA, gammaC, delta1 and delta3. An immunohistochemical study also confirmed the preferential localization of gamma and delta isoforms in SN dopaminergic neurons. In dopaminergic neurons, immunoreactivity against anti-CaMKIIdelta1-4 antibody was detected in both nucleus and cytoplasm, in contrast to the predominant expression of gamma isoforms in the cytoplasm. Furthermore, we showed expression of brain-derived neurotrophic factor (BDNF) mRNAs with exons II and IV in SN. Taken together with our previous observations, the results suggest that the CaMKIIdelta3 isoform is involved in the expression of BDNF in the SN.  相似文献   

14.
15.
Endothelin-1 (ET-1) induces cardiac hypertrophy. Because Ca(2+) is a major second messenger of ET-1, the role of Ca(2+) in ET-1-induced hypertrophic responses in cultured cardiac myocytes of neonatal rats was examined. ET-1 activated the promoter of the beta-type myosin heavy chain gene (beta-MHC) (-354 to +34 base pairs) by about 4-fold. This activation was inhibited by chelation of Ca(2+) and the blocking of protein kinase C activity. Similarly, the beta-MHC promoter was activated by Ca(2+) ionophores and a protein kinase C activator. beta-MHC promoter activation induced by ET-1 was suppressed by pretreatment with the calmodulin inhibitor, W7, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, KN62, and the calcineurin inhibitor, cyclosporin A. beta-MHC promoter activation by ET-1 was also attenuated by overexpression of dominant-negative mutants of CaMKII and calcineurin. ET-1 increased the activity of CaMKII and calcineurin in cardiac myocytes. Pretreatment with KN62 and cyclosporin A strongly suppressed ET-1-induced increases in [(3)H]phenylalanine uptake and in cell size. These results suggest that Ca(2+) plays a critical role in ET-1-induced cardiomyocyte hypertrophy by activating CaMKII- and calcineurin-dependent pathways.  相似文献   

16.
After initial activation by Ca2+, the catalytic activity of type II Ca2+/calmodulin-dependent protein kinase rapidly becomes partially independent of Ca2+. The transition is caused by autophosphorylation of a few subunits in the dodecameric holoenzyme, which is composed of varying proportions of two homologous types of subunits, alpha (50 kd) and beta (58-60 kd). We have identified one site in the alpha subunit (Thr286) and two in the beta subunit (Thr287 and Thr382) that are rapidly autophosphorylated. We show that phosphorylation of alpha-Thr286 and beta-Thr287, which are located immediately adjacent to the calmodulin binding domain, controls Ca2(+)-independent activity. In contrast, phosphorylation of beta-Thr382 is not required to maintain Ca2+ independence. It is absent in the alpha subunit and is selectively removed from the minor beta' subunit, apparently by alternative splicing. Regulation of the presence of beta-Thr382 in the holoenzyme by both differential gene expression and alternative splicing suggests that it may have an important but highly specialized function.  相似文献   

17.
18.
Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.  相似文献   

19.
Calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous, multifunctional enzyme family involved in the regulation of a variety of Ca(2+)-signaling pathways. These family members are expressed from four highly homologous genes (alpha, beta, gamma, and delta) with similar catalytic properties. Additional isoforms of each gene, created by alternative splicing of variable regions I-XI, are differentially expressed in various cell types. gammaB, gammaC, gammaD, gammaE, gammaF, gammaGs, and gammaH CaMKII isoforms are expressed in the biliary epithelium; however, little is known about their roles in these cells. We began our studies into the function of these variable regions by examining the effects of variable region I on kinase activation and calmodulin binding. Activities and calmodulin binding properties of gammaB and gammaGs, which differ only by the exclusion or inclusion of this region, were compared. The K(0.5) for calmodulin was 2.5-fold lower for gammaGs than gammaB. In contrast, gammaB bound calmodulin more tightly in a calmodulin overlay assay. Mutation of variable regions I's charged residue, gammaGs-R318E, resulted in an enzyme with intermediate activation properties but a calmodulin affinity similar to gammaB. Thus, variable region I appears to modulate calmodulin sensitivity, in part, through charge-charge interactions. This altered threshold of activation may modulate cellular responses to gradients of Ca(2+)/calmodulin in the biliary tract.  相似文献   

20.
The delta isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) predominates in the heart. To investigate the role of CaMKII in cardiac function, we made transgenic (TG) mice that express the nuclear delta(B) isoform of CaMKII. The expressed CaMKIIdelta(B) transgene was restricted to the myocardium and highly concentrated in the nucleus. Cardiac hypertrophy was evidenced by an increased left ventricle to body weight ratio and up-regulation of embryonic and contractile protein genes including atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin. Echocardiography revealed ventricular dilation and decreased cardiac function, which was also observed in hemodynamic measurements from CaMKIIdelta(B) TG mice. Surprisingly, phosphorylation of phospholamban at both Thr(17) and Ser(16) was significantly decreased in the basal state as well as upon adrenergic stimulation. This was associated with diminished sarcoplasmic reticulum Ca(2+) uptake in vitro and altered relaxation properties in vivo. The activity and expression of protein phosphatase 2A were both found to be increased in CaMKII TG mice, and immunoprecipitation studies indicated that protein phosphatase 2A directly associates with CaMKII. Our findings are the first to demonstrate that CaMKII can induce hypertrophy and dilation in vivo and indicate that compensatory increases in phosphatase activity contribute to the resultant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号