首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the role of the two closely related homeobox genes Gsh1 and Gsh2, in the development of the striatum and the olfactory bulb. These two genes are expressed in a partially overlapping pattern by ventricular zone progenitors of the ventral telencephalon. Gsh2 is expressed in both of the ganglionic eminences while Gsh1 is largely confined to the medial ganglionic eminence. Previous studies have shown that Gsh2(-/-) embryos suffer from an early misspecification of precursors in the lateral ganglionic eminence (LGE) leading to disruptions in striatal and olfactory bulb development. This molecular misspecification is present only in early precursor cells while at later stages the molecular identity of these cells appears to be normalized. Concomitant with this normalization, Gsh1 expression is notably expanded in the Gsh2(-/-) LGE. While no obvious defects in striatal or olfactory bulb development were detected in Gsh1(-/-) embryos, Gsh1/2 double homozygous mutants displayed more severe disruptions than were observed in the Gsh2 mutant alone. Accordingly, the molecular identity of LGE precursors in the double mutant is considerably more perturbed than in Gsh2 single mutants. These findings, therefore, demonstrate an important role for Gsh1 in the development of the striatum and olfactory bulb of Gsh2 mutant mice. In addition, our data indicate a role for Gsh genes in controlling the size of the LGE precursor pools, since decreasing copies of Gsh2 and Gsh1 alleles results in a notable decrease in precursor cell number, particularly in the subventricular zone.  相似文献   

2.
We have examined the role of the homeobox gene Gsh2 in retinoid production and signaling within the ventral telencephalon of mouse embryos. Gsh2 mutants exhibit altered ventral telencephalic development, including a smaller striatum with fewer DARPP-32 neurons than wild types. We show that the expression of the retinoic acid (RA) synthesis enzyme, retinaldehyde dehydrogenase 3 (Raldh3, also known as Aldh1a3), is reduced in the lateral ganglionic eminence (LGE) of Gsh2 mutants. Moreover, using a retinoid reporter cell assay, we found that retinoid production in the Gsh2 mutants is markedly reduced. The striatal defects in Gsh2 mutants are thought to result from ectopic expression of Pax6 in the LGE. Previously, we had shown that removal of Pax6 from the Gsh2 mutant background improves the molecular identity of the LGE in these double mutants; however, Raldh3 expression is not improved. The Pax6;Gsh2 double mutants possess a larger striatum than the Gsh2 mutants, but the disproportionate reduction in DARPP-32 neurons is not improved. These findings suggest that reduced retinoid production in the Gsh2 mutant contributes to the striatal differentiation defects. As RA promotes the expression of DARPP-32 in differentiating LGE cells in vitro, we examined whether exogenous RA can improve striatal neuron differentiation in the Gsh2 mutants. Indeed, RA supplementation of Gsh2 mutants, during the period of striatal neurogenesis, results in a significant increase in DARPP-32 expression. Thus, in addition to the previously described role for Gsh2 to maintain correct molecular identity in the LGE, our results demonstrate a novel requirement of this gene for retinoid production within the ventral telencephalon.  相似文献   

3.
4.
We have examined the genetic mechanisms that regulate dorsal-ventral identity in the embryonic mouse telencephalon and, in particular, the specification of progenitors in the cerebral cortex and striatum. The respective roles of Pax6 and Gsh2 in cortical and striatal development were studied in single and double loss-of-function mouse mutants. Gsh2 gene function was found to be essential to maintain the molecular identity of early striatal progenitors and in its absence the ventral telencephalic regulatory genes Mash1 and Dlx are lost from most of the striatal germinal zone. In their place, the dorsal regulators, Pax6, neurogenin 1 and neurogenin 2 are found ectopically. Conversely, Pax6 is required to maintain the correct molecular identity of cortical progenitors. In its absence, neurogenins are lost from the cortical germinal zone and Gsh2, Mash1 and Dlx genes are found ectopically. These reciprocal alterations in cortical and striatal progenitor specification lead to the abnormal development of the cortex and striatum observed in Pax6 (small eye) and Gsh2 mutants, respectively. In support of this, double homozygous mutants for Pax6 and Gsh2 exhibit significant improvements in both cortical and striatal development compared with their respective single mutants. Taken together, these results demonstrate that Pax6 and Gsh2 govern cortical and striatal development by regulating genetically opposing programs that control the expression of each other as well as the regionally expressed developmental regulators Mash1, the neurogenins and Dlx genes in telencephalic progenitors.  相似文献   

5.
6.
7.
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.  相似文献   

8.
Considerable data suggest that sonic hedgehog (Shh) is both necessary and sufficient for the specification of ventral pattern throughout the nervous system, including the telencephalon. We show that the regional markers induced by Shh in the E9.0 telencephalon are dependent on the dorsoventral and anteroposterior position of ectopic Shh expression. This suggests that by this point in development regional character in the telencephalon is established. To determine whether this prepattern is dependent on earlier Shh signaling, we examined the telencephalon in mice carrying either Shh- or Gli3-null mutant alleles. This analysis revealed that the expression of a subset of ventral telencephalic markers, including Dlx2 and Gsh2, although greatly diminished, persist in Shh(-/-) mutants, and that these same markers were expanded in Gli3(-/-) mutants. To understand further the genetic interaction between Shh and Gli3, we examined Shh/Gli3 and Smoothened/Gli3 double homozygous mutants. Notably, in animals carrying either of these genetic backgrounds, genes such as Gsh2 and Dlx2, which are expressed pan-ventrally, as well as Nkx2.1, which demarcates the ventral most aspect of the telencephalon, appear to be largely restored to their wild-type patterns of expression. These results suggest that normal patterning in the telencephalon depends on the ventral repression of Gli3 function by Shh and, conversely, on the dorsal repression of Shh signaling by Gli3. In addition these results support the idea that, in addition to hedgehog signaling, a Shh-independent pathways must act during development to pattern the telencephalon.  相似文献   

9.
In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dollé, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  相似文献   

10.
11.
The development of the progenitor zones in the pallium, lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE) in the subpallium has been well studied; however, so far the role of the caudal ganglionic eminence (CGE), a posterior subpallial domain, in telencephalon patterning remains poorly understood. COUP-TFII, an orphan nuclear receptor, is preferentially expressed in the CGE. We generated COUP-TFII mouse mutants, using Rx-Cre (RxCre;COUP-TFII(F/F)), to study its function in telencephalon development. In these mutants, we found severe defects in the formation of the amygdala complex, including the lateral (LA), basolateral (BLA) and basomedial (BMA) amygdala nuclei. Molecular analysis provided evidence that the migration of CGE-derived Pax6(+) cells failed to settle into the BMA nucleus, owing to reduced expression of neuropilin 1 (Nrp1) and Nrp2, two semaphorin receptors that regulate neuronal cell migration and axon guidance. Our ChIP assays revealed that Nrp1 and Nrp2 genes are the direct targets of COUP-TFII in the telencephalon in vivo. Furthermore, our results showed that the coordinated development between the CGE originated subpallial population (Pax6(+) cells) and pallial populations (Tbr1(+) and Lhx2(+) cells) was essential for patterning the amygdala assembly. Our study presented novel genetic evidence that the caudal ganglionic eminence, a distinct subpallial progenitor zone, contributes cells to the basal telencephalon, such as the BMA nucleus.  相似文献   

12.
Although retinoic acid (RA) has been implicated as one of the diffusible signals regulating forebrain development, patterning of the forebrain has not been analyzed in detail in knockout mouse mutants deficient in embryonic RA synthesis. We show that the retinaldehyde dehydrogenase 2 (RALDH2) enzyme is responsible for RA synthesis in the mouse craniofacial region and forebrain between the 8- and 15-somite stages. Raldh2-/- knockout embryos exhibit defective morphogenesis of various forebrain derivatives, including the ventral diencephalon, the optic and telencephalic vesicles. These defects are preceded by regionally decreased cell proliferation in the neuroepithelium, correlating with abnormally low D-cyclin gene expression. Increases in cell death also contribute to the morphological deficiencies at later stages. Molecular analyses reveal abnormally low levels of FGF signaling in the craniofacial region, and impaired sonic hedgehog signaling in the ventral diencephalon. Expression levels of several regulators of diencephalic, telencephalic and optic development therefore cannot be maintained. These results unveil crucial roles of RA during early mouse forebrain development, which may involve the regulation of the expansion of neural progenitor cells through a crosstalk with FGF and sonic hedgehog signaling pathways.  相似文献   

13.
Hedgehog signaling is required for multiple aspects of brain development, including growth, the establishment of both dorsal and ventral midline patterning and the generation of specific cell types such as oligodendrocytes and interneurons. To identify more precisely when during development hedgehog signaling mediates these events, we directed the removal of hedgehog signaling within the brain by embryonic day 9 of development, using a FoxG1(Cre) driver line to mediate the removal of a conditional smoothened null allele. We observed a loss of ventral telencephalic patterning that appears to result from an initial lack of specification of these structures rather than by changes in proliferation or cell death. A further consequence of the removal of smoothened in these mice is the near absence of both oligodendrocytes and interneurons. Surprisingly, the dorsal midline appears to be patterned normally in these mutants. Together with previous analyses, the present results demonstrate that hedgehog signaling in the period between E9.0 and E12 is essential for the patterning of ventral regions and the generation of cell types that are thought to largely arise from them.  相似文献   

14.
15.
Fate determination in the mammalian forebrain, where mature phenotypes are often not achieved until postnatal stages of development, has been an elusive topic of study despite its relevance to neuropsychiatric disease. In the ventral telencephalon, major subgroups of cerebral cortical interneurons originate in the medial ganglionic eminence (MGE), where the signaling molecule sonic hedgehog (Shh) continues to be expressed during the period of neuronogenesis. To examine whether Shh regulates cortical interneuron specification, we studied mice harboring conditional mutations in Shh within the neural tube. At embryonic day 12.5, NestinCre:Shh(Fl/Fl) mutants have a relatively normal index of S-phase cells in the MGE, but many of these cells do not co-express the interneuron fate-determining gene Nkx2.1. This effect is reproduced by inhibiting Shh signaling in slice cultures, and the effect can be rescued in NestinCre:Shh(Fl/Fl) slices by the addition of exogenous Shh. By culturing MGE progenitors on a cortical feeder layer, cell fate analyses suggest that Shh signaling maintains Nkx2.1 expression and cortical interneuron fate determination by MGE progenitors. These results are corroborated by the examination of NestinCre:Shh(Fl/Fl) cortex at postnatal day 12, in which there is a dramatic reduction in cell profiles that express somatostatin or parvalbumin. By contrast, analyses of Dlx5/6Cre:Smoothened(Fl/Fl) mutant mice suggest that cell-autonomous hedgehog signaling is not crucial to the migration or differentiation of most cortical interneurons. These results combine in vitro and ex vivo analyses to link embryonic abnormalities in Shh signaling to postnatal alterations in cortical interneuron composition.  相似文献   

16.
17.
GABAergic interneurons have major roles in hippocampal function and dysfunction. Here we provide evidence that, in mice, virtually all of these cells originate from progenitors in the basal telencephalon. Immature interneurons tangentially migrate from the basal telencephalon through the neocortex to take up their final positions in the hippocampus. Disrupting differentiation in the embryonic basal telencephalon (lateral and medial ganglionic eminences) through loss of Dlx1/2 homeobox function blocks the migration of virtually all GABAergic interneurons to the hippocampus. On the other hand, disrupting specification of the medial ganglionic eminence through loss of Nkx2.1 homeobox function depletes the hippocampus of a distinct subset of hippocampal interneurons. Loss of hippocampal interneurons does not appear to have major effects on the early development of hippocampal projection neurons nor on the pathfinding of afferrent tracts.  相似文献   

18.
In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis‐regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior–posterior neuraxis. By crossing this transgenic line with the RosatdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE.  相似文献   

19.
Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia. Previously, it was suggested that tangential migration of interneurons occurs in a radial glia independent manner. Here, using simultaneous imaging of genetically defined populations of interneurons and radial glia, we demonstrate that dynamic interactions with radial glia can potentially influence the trajectory of interneuronal migration and thus the positioning of interneurons in cerebral cortex. Furthermore, there is extensive local interneuronal migration in tangential direction opposite to that of pallial orientation (i.e., in a medial to lateral direction from cortex to ganglionic eminence) all across the cerebral wall. This counter migration of interneurons may be essential to locally position interneurons once they invade the developing cerebral wall from the ganglionic eminence. Together, these observations suggest that interactions with radial glial scaffold and localized migration within the expanding cerebral wall may play essential roles in the guidance and placement of interneurons in the developing cerebral cortex.  相似文献   

20.
Chatzi C  Brade T  Duester G 《PLoS biology》2011,9(4):e1000609
Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3?/? embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号