首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-gamma or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-gamma+/IL-2+) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people.  相似文献   

2.
Boritz E  Palmer BE  Wilson CC 《Journal of virology》2004,78(22):12638-12646
Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-gamma)-producing CD4+ T cells. Among the 20 viremic, treatment-naive subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-gamma-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.  相似文献   

3.
4.
Cellular activation is critical for the propagation of human immunodeficiency virus type 1 (HIV-1) infection. It has been suggested that truly naive CD4(+) T cells are resistant to productive HIV-1 infection because of their constitutive resting state. Memory and naive CD4(+) T-cell subsets from 11 HIV-1-infected individuals were isolated ex vivo by a combination of magnetic bead depletion and fluorescence-activated cell sorting techniques with stringent criteria of combined expression of CD45RA and CD62L to identify naive CD4(+) T-cell subsets. In all patients HIV-1 provirus could be detected within naive CD45RA+/CD62L+ CD4(+) T cells; in addition, replication-competent HIV-1 was isolated from these cells upon CD4(+) T-cell stimulation in tissue cultures. Memory CD4(+) T cells had a median of fourfold more replication-competent virus and a median of sixfold more provirus than naive CD4(+) T cells. Overall, there was a median of 16-fold more integrated provirus identified in memory CD4(+) T cells than in naive CD4(+) T cells within a given patient. Interestingly, there was a trend toward equalization of viral loads in memory and naive CD4(+) T-cell subsets in those patients who harbored CXCR4-using (syncytium-inducing) viruses. Within any given patient, there was no selective usage of a particular coreceptor by virus isolated from memory versus naive CD4(+) T cells. Our findings suggest that naive CD4(+) T cells may be a significant viral reservoir for HIV, particularly in those patients harboring CXCR4-using viruses.  相似文献   

5.
Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus   总被引:3,自引:0,他引:3  
Infection with the HIV type 1 (HIV-1) can result both in depletion of CD4(+) T cells and in the generation of dysfunctional CD8(+) T cells. In HIV-1-infected children, repopulation of the peripheral T cell pool is mediated by the thymus, which is itself susceptible to HIV-1 infection. Previous work has shown that MHC class I (MHC I) molecules are strongly up-regulated as result of IFN-alpha secretion in the HIV-1-infected thymus. We demonstrate in this study that increased MHC I up-regulation on thymic epithelial cells and double-positive CD3(-/int)CD4(+)CD8(+) thymocytes correlates with the generation of mature single-positive CD4(-)CD8(+) thymocytes that have low expression of CD8. Treatment of HIV-1-infected thymus with highly active antiretroviral therapy normalizes MHC I expression and surface CD8 expression on such CD4(-)CD8(+) thymocytes. In pediatric patients with possible HIV-1 infection of the thymus, a low CD3 percentage in the peripheral circulation is also associated with a CD8(low) phenotype on circulating CD3(+)CD8(+) T cells. Furthermore, CD8(low) peripheral T cells from these HIV-1(+) pediatric patients are less responsive to stimulation by Ags from CMV. These data indicate that IFN-alpha-mediated MHC I up-regulation on thymic epithelial cells may lead to high avidity interactions with developing double-positive thymocytes and drive the selection of dysfunctional CD3(+)CD8(low) T cells. We suggest that this HIV-1-initiated selection process may contribute to the generation of dysfunctional CD8(+) T cells in HIV-1-infected patients.  相似文献   

6.
Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4(+) T cells along with death and/or dysfunction of CD8(+) T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4(+) and CD8(+) T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4(+) T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8(+) T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4(+) T cells, neither viral isolate induced apoptosis in CD8(+) T cells. Moreover, in both infected and control tissues we found similar numbers of CD8(+) T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3-anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4(+) T cells, the death of CD8(+) T cells apparently requires additional factors.  相似文献   

7.
Preferential apoptosis of HIV-1-specific CD4+ T cells   总被引:4,自引:0,他引:4  
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an important contributor to the pathogenesis of CD4+ T cell depletion in HIV/AIDS. We show here that, within HIV-1-infected individuals, a greater proportion of ex vivo HIV-1-specific CD4+ T cells undergo apoptosis compared with CMV-specific CD4+ T cells (45 vs 7.4%, respectively, p < 0.05, in chronic progressors). The degree of apoptosis within HIV-1-specific CD4+ T cells correlates with viral load and disease progression, and highly active antiretroviral therapy abrogates these differences. The data support a mechanism for apoptosis in these cells similar to that found in activation-induced apoptosis through the TCR, resulting in oxygen-free radical production, mitochondrial damage, and caspase-9 activation. That HIV-1 proteins can also directly enhance activation-induced apoptosis supports a mechanism for a preferential induction of apoptosis of HIV-1-specific CD4+ T cells, which contributes to a loss of immunological control of HIV-1 replication.  相似文献   

8.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

9.
Little is known about what effector populations are associated with the control of human herpesvirus 8 (HHV-8) infection in vivo. We compared T lymphocyte subsets among HIV-HHV-8+ and HIV-HHV-8- infected human individuals. alphabeta+ T cells from HHV-8-infected individuals displayed a significantly higher percentage of differentiated effector cells among both CD4+ and CD8+ T cell subsets. HHV-8 infection was associated with significant expansion of gammadelta+ Vdelta1 T cells expressing a differentiated effector cell phenotype in peripheral blood. In vitro stimulation of PBMC from HHV-8-infected individuals with either infectious viral particles or different HHV-8 viral proteins resulted in gammadelta Vdelta1 T cell activation. In addition, gammadelta Vdelta1 T cells displayed a strong reactivity against HHV-8-infected cell lines and prevented the release of infectious viral particles following the induction of lyric replication. These data indicate that gammadelta T cells play a role in both innate and adaptive T cell responses against HHV-8 in immunocompetent individuals.  相似文献   

10.
HIV-1 replication is associated with reduced or absent HIV-1-specific CD4+ T cell proliferation and skewing of HIV-1-specific CD4+ T cells toward an IFN-gamma-producing, CCR7- phenotype. The CCR7- T cell population is heterogeneous and can be subdivided based on the expression of CD57. Although CD57 expression on CD8+ T cells is associated with proliferation incompetence and replicative senescence, less is known about the function of CD57-expressing CD4+ T cells. In this study, the frequency, phenotype, and function of CD57+CD4+ T cells were evaluated in 25 HIV-1-infected subjects and 10 seronegative controls. CD57+CD4+ T cells were found to be proliferation incompetent, even after strong mitogen stimulation. Percentages of CD4+ T cells that expressed CD57 were significantly higher in untreated HIV-1-infected subjects than in HIV-1-seronegative donors, and CD57 expression did not normalize in subjects receiving at least 6 mo of effective antiretroviral therapy. CD57 was predominately expressed on the CCR7- fraction of the CD4+ T cell compartment and accounted for the majority of cells in the CCR7-CD45RA+ population from untreated HIV-1-infected subjects. HIV-1-specific CD4+ T cells producing only IFN-gamma had the highest expression of CD57, whereas few cells producing IL-2 alone expressed CD57. These findings further define a novel population of proliferation-incompetent CD4+ T cells that are generated in the presence of chronic Ag exposure. A better understanding of the generation and persistence of CD57+ T cells in HIV-1 infection could provide important insights into the immunopathogenesis of this disease.  相似文献   

11.
12.
Sexual contact with HIV-infected semen is a major driving force behind the global HIV pandemic. Little is known regarding the immune correlates of virus shedding in this compartment, although HIV-1-specific CD8+ T cells are present in semen. We collected blood and semen from 27 chronically HIV-infected, therapy-naive men without common sexually transmitted infections or urethral inflammation and measured HIV-1 RNA viral load and cytokine/chemokine levels in both compartments. HIV-1 RNA levels were 10-fold higher in blood than semen, but discordantly high semen shedding was associated with higher semen levels of the proinflammatory cytokines IL-6, IL-8, IL-12, and IFN-gamma. Virus-specific CD8+ T cell epitopes were mapped in blood by IFN-gamma ELISPOT, using an overlapping HIV-1 clade B peptide matrix, and blood and semen CD8+ T cell responses were then assayed ex vivo using intracellular IFN-gamma staining. HIV-specific CD8+ responses were detected in 70% of semen samples, and their frequency was similar to or higher than blood. There was no correlation between the presence of virus-specific CD8+ T cells in semen and levels of HIV-1 RNA shedding. Among participants with detectable CD8+ IFN-gamma semen responses, their relative frequency was not associated with reduced HIV-1 RNA shedding, and their absolute number was correlated with higher levels of HIV-1 RNA semen shedding (r = 0.6; p = 0.03) and of several proinflammatory cytokines. Neither the presence nor the frequency of semen HIV-specific CD8+ T cell IFN-gamma responses in semen correlated with reduced levels of HIV RNA in semen.  相似文献   

13.
Interleukin-15 (IL-15) in vitro treatment of peripheral blood mononuclear cells (PBMC) from human immunodeficiency virus (HIV)-infected individuals specifically enhances the function and survival of HIV-specific CD8+ T cells, while in vivo IL-15 treatment of mice preferentially expands memory CD8+ T cells. In this study, we investigated the in vivo effect of IL-15 treatment in 9 SIVmac251-infected cynomolgus macaques (low dose of IL-15, 10 microg/kg of body weight, n = 3; high dose of IL-15, 100 microg/kg, n = 3; control [saline], n = 3; dose administered twice weekly for 4 weeks). IL-15 treatment induced a nearly threefold increase in peripheral blood CD8+CD3- NK cells. Furthermore, CD8+ T-cell numbers increased more than twofold, mainly due to an increase in the CD45RA-CD62L- and CD45RA+CD62L- effector memory CD8+ T cells. Expression of Ki-67 in the CD8+ T cells indicated expansion of CD8+ T cells and not redistribution. IL-15 did not affect CD4+ T-cell, B-cell, and CD14+ macrophage numbers. No statistically significant differences in changes from baseline in the viral load were observed when control-, low-dose-, and high-dose-treated animals were compared. No clinical adverse effects were observed in any of the animals studied. The selective expansion of effector memory CD8+ T cells and NK cells by IL-15 further supports IL-15's possible therapeutic use in viral infections such as HIV infection.  相似文献   

14.
Virus-specific CD8(+) T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8(+) T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8(+) T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8(+) T cells was associated with an enhanced potential for CD8 expansion and IFN-gamma production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8(+) T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8(+) T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.  相似文献   

15.
Fior J 《PloS one》2012,7(5):e37511
HIV infection usually leads to a progressive decline in number and functionality of CD4+ T lymphocytes, resulting in AIDS development. In this study, I investigated the strategy of using inoculated SupT1 cells to move infection from HIV-1 X4 strains toward the inoculated cells, which should theoretically prevent infection and depletion of normal CD4+ T cells, preventing the development of AIDS-related pathologies. Interestingly, the persistent in vitro replication in SupT1 cells renders the virus less cytopathic and more sensitive to antibody-mediated neutralization, suggesting that replication of the virus in the inoculated SupT1 cells may have a vaccination effect in the long run. In order to mimic the scenario of a therapy in which SupT1 cells are inoculated in an HIV-seropositive patient, I used infected SupT1/PBMC cocultures and a series of control experiments. Infections were done with equal amounts of the wild type HIV-1 LAI virus. The SupT1 CD4+CD8+ T cell population was distinguished from the PBMC CD4+CD8- T cell population by FACS analysis. The results of this study show that the virus-mediated killing of primary CD4+ T cells in the SupT1/PBMC cocultures was significantly delayed, suggesting that the preferential infection of SupT1 cells can induce the virus to spare primary CD4+ T cells from infection and depletion. The preferential infection of SupT1 cells can be explained by the higher viral tropism for the SupT1 cell line. In conclusion, this study demonstrates that it's possible in an in vitro system to use SupT1 cells to prevent HIV infection of primary CD4+ T cells, suggesting that further exploration of the SupT1 cell line as a cell-based therapy against HIV-1 may prove worthwhile.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) infection of T cells and cells of the monocyte/macrophage lineage requires a specific interaction between the CD4 antigen expressed on the cell surface and the HIV-1 external envelope glycoprotein (gp120). To study the association between HIV-1 infection and modulation of cell surface expression of the CD4 molecule in vivo, we examined the CD4+ T cells harboring proviral DNA obtained from HIV-1-infected individuals who had received no antiretroviral therapy for at least 90 days. Simultaneous immunophenotyping of CD4 cell surface expression and PCR-driven in situ hybridization for HIV-1 DNA were used to resolve the CD4+ T cells into distinct populations predicted upon the presence or absence of proviral DNA. Among the HIV-1-infected study subjects, the percentage of CD4+ T cells harboring proviral DNA ranged from 17.3 to 55.5%, with a mean of 40.5%. Cell surface fluorescent staining with anti-CD4 antibody directed against a non-gp120 binding site-related epitope (L120) or a conformation-dependent epitope of the gp120 binding site (Leu 3A) demonstrated either an equivalent or a 1.5- to 3-fold-lower cell surface staining intensity for the HIV-1 DNA-positive subpopulation relative to the HIV-1 DNA-negative subpopulation, respectively. These data suggest that masking or alteration of specific epitopes on the CD4 molecule occurs after viral infection.  相似文献   

17.
18.
19.
In this report, we present evidence that R5 human immunodeficiency virus type 1 (HIV-1) replicates more efficiently in primary CD4+ T cells than X4 HIV-1. By comparing CD3/CD28-costimulated CD4+ T-cell cultures infected by several X4 and R5 HIV-1 strains, we determined that R5-infected CD4+ T cells produce more virus over time than X4-infected CD4+ T cells. In the first comparison, we found that more cells were infected by the X4-tropic strain LAI than by the R5-tropic strain JR-CSF and yet that higher levels of viral production were detected in the R5-infected cultures. The differential viral production was partially due to the severe cytopathic effects of the X4 virus. We also compared cultures infected with the isogenic HIV-1 strains NL4-3 (X4) and 49.5 (R5). We found that fewer cells were infected by the R5 strain, and yet similar levels of viral production were detected in both infected cultures. Cell death played less of a role in the differential viral production of these strains, as the cell viability remained comparable in both X4- and R5-infected cultures over time. The final comparison involved the primary R5-tropic isolate KP1 and the primary dual-tropic isolate KP2. Although both strains infected similar numbers of cells and induced comparable levels of cytopathicity, viral production was considerably higher in the R5-infected culture. In summary, these data demonstrate that R5 HIV-1 has an increased capacity to replicate in costimulated CD4+ T cells compared to X4 HIV-1.  相似文献   

20.
A hallmark of human immunodeficiency virus type 1 (HIV-1) pathogenesis is the rapid loss of CD4 T cells leading to generalized immune dysfunction, including an exhausted CD8 T cell phenotype. Understanding the necessary factors that govern the functional quality and protective potential of antiviral T cell responses would facilitate rational vaccine design and improve therapeutic strategies to combat persistent infections. Mouse models of chronic viral infection demonstrate that interleukin-21 (IL-21), produced primarily by CD4 T cells, is required for the generation and maintenance of functionally competent CD8 T cells and viral containment. We reasoned that preserved IL-21 production during HIV-1 infection would be associated with enhanced CD8 T cell function, allowing improved viral control. Here we analyzed the ability of CD4 and CD8 T cells to produce several cytokines in addition to IL-21 ex vivo following stimulation with overlapping HIV-1 peptides. Both CD4 and CD8 T cells were able to produce IL-21 in response to HIV-1 infection, with the latter cell type more closely associated with viral control. Furthermore, IL-21-producing HIV-1-specific CD4 T cells (compared to those producing other cytokines) were the best indicator of functional CD8 T cells. Our results demonstrate that HIV-1-specific IL-21-producing CD8 T cells are induced following primary infection and enriched in elite controllers, suggesting a critical role for these cells in the maintenance of viremia control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号