首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of seemingly unrelated clinical conditions manifest the same effects on the heart. These effects include: (1) reversible myocardial dysfunction, (2) beta-adrenergic desensitization, and (3) activation of inflammatory mediators. We provide evidence supporting a role for cytokines, mitogen activated protein kinases (MAP kinases), and nitric oxide (NO) as common mediators of reversible myocardial dysfunction and beta-adrenergic desensitization. Data from animal models and human studies support a pathogenic role for these inflammatory mediators in ischemic as well as non-ischemic myocardial dysfunction. It is suggested that compensatory cellular programs are activated to provide short-term protection from brief periods of ischemia and infection. Continuous activation of these compensatory pathways leads to cardiomyopathy and chronic (congestive) heart failure. Elucidating the signaling pathways involved has the potential to provide the opportunity to exploit the cardioprotective advantages of these agents without bearing the burden of excessive stimulation.  相似文献   

2.
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.  相似文献   

3.
4.
It has become evident that protein degradation by proteolytic enzymes, known as proteases, is partly responsible for cardiovascular dysfunction in various types of heart disease. Both extracellular and intracellular alterations in proteolytic activities are invariably seen in heart failure associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopathy, diabetic cardiomyopathy, and ischemic cardiomyopathy. Genetic cardiomyopathy displayed in different strains of hamsters provides a useful model for studying heart failure due to either cardiac hypertrophy or cardiac dilation. Alterations in the function of several myocardial organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, as well as extracellular matrix have been shown to be due to subcellular remodeling as a consequence of changes in gene expression and protein content in failing hearts from cardiomyopathic hamsters. In view of the increased activities of various proteases, including calpains and matrix metalloproteinases in the hearts of genetically determined hamsters, it is proposed that the activation of different proteases may also represent an important determinant of subcellular remodeling and cardiac dysfunction associated with genetic cardiomyopathy.  相似文献   

5.
Fatty acid oxidation (FAO) is a primary energy source for meeting the heart's energy requirements. Peroxisome proliferator-activated receptor-delta (PPAR-delta) may have important roles in FAO. But it remains unclear whether PPAR-delta is required for maintaining basal myocardial FAO. We show that cre-loxP-mediated cardiomyocyte-restricted deletion of PPAR-delta in mice downregulates constitutive expression of key FAO genes and decreases basal myocardial FAO. These mice have cardiac dysfunction, progressive myocardial lipid accumulation, cardiac hypertrophy and congestive heart failure with reduced survival. Thus, chronic myocardial PPAR-delta deficiency leads to lipotoxic cardiomyopathy. Together, our data show that PPAR-delta is a crucial determinant of constitutive myocardial FAO and is necessary to maintain energy balance and normal cardiac function. We suggest that PPAR-delta is a potential therapeutic target in treating lipotoxic cardiomyopathy and other heart diseases.  相似文献   

6.
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic ‘backfill’ and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

7.
Oxidative stress causes mitochondrial dysfunction and heart failure through unknown mechanisms. Cardiolipin (CL), a mitochondrial membrane phospholipid required for oxidative phosphorylation, plays a pivotal role in cardiac function. The onset of age-related heart diseases is characterized by aberrant CL acyl composition that is highly sensitive to oxidative damage, leading to CL peroxidation and mitochondrial dysfunction. Here we report a key role of ALCAT1, a lysocardiolipin acyltransferase that catalyzes the synthesis of CL with a high peroxidation index, in mitochondrial dysfunction associated with hypertrophic cardiomyopathy. We show that ALCAT1 expression was potently upregulated by the onset of hyperthyroid cardiomyopathy, leading to oxidative stress and mitochondrial dysfunction. Accordingly, overexpression of ALCAT1 in H9c2 cardiac cells caused severe oxidative stress, lipid peroxidation, and mitochondrial DNA (mtDNA) depletion. Conversely, ablation of ALCAT1 prevented the onset of T4-induced cardiomyopathy and cardiac dysfunction. ALCAT1 deficiency also mitigated oxidative stress, insulin resistance, and mitochondrial dysfunction by improving mitochondrial quality control through upregulation of PINK1, a mitochondrial GTPase required for mitochondrial autophagy. Together, these findings implicate a key role of ALCAT1 as the missing link between oxidative stress and mitochondrial dysfunction in the etiology of age-related heart diseases.  相似文献   

8.
9.
Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells), cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.  相似文献   

10.
11.
Cirrhotic cardiomyopathy is the term used to describe a constellation of features indicative of abnormal heart structure and function in patients with cirrhosis. These include systolic and diastolic dysfunction, electrophysiological changes, and macroscopic and microscopic structural changes. The prevalence of cirrhotic cardiomyopathy remains unknown at present, mostly because the disease is generally latent and shows itself when the patient is subjected to stress such as exercise, drugs, hemorrhage and surgery. The main clinical features of cirrhotic cardiomyopathy include baseline increased cardiac output, attenuated systolic contraction or diastolic relaxation in response to physiologic, pharmacologic and surgical stress, and electrical conductance abnormalities (prolonged QT interval). In the majority of cases, diastolic dysfunction precedes systolic dysfunction, which tends to manifest only under conditions of stress. Generally, cirrhotic cardiomyopathy with overt severe heart failure is rare. Major stresses on the cardiovascular system such as liver transplantation, infections and insertion of transjugular intrahepatic portosystemic stent-shunts (TIPS) can unmask the presence of cirrhotic cardiomyopathy and thereby convert latent to overt heart failure. Cirrhotic cardiomyopathy may also contribute to the pathogenesis of hepatorenal syndrome. Pathogenic mechanisms of cirrhotic cardiomyopathy are multiple and include abnormal membrane biophysical characteristics, impaired β-adrenergic receptor signal transduction and increased activity of negative-inotropic pathways mediated by cGMP. Diagnosis and differential diagnosis require a careful assessment of patient history probing for excessive alcohol, physical examination for signs of hypertension such as retinal vascular changes, and appropriate diagnostic tests such as exercise stress electrocardiography, nuclear heart scans and coronary angiography. Current management recommendations include empirical, nonspecific and mainly supportive measures. The exact prognosis remains unclear. The extent of cirrhotic cardiomyopathy generally correlates to the degree of liver insufficiency. Reversibility is possible (either pharmacological or after liver transplantation), but further studies are needed.  相似文献   

12.
糖尿病心肌病相关信号通路的研究进展   总被引:1,自引:0,他引:1  
尹茂山  牟艳玲 《生命科学》2014,(10):1084-1089
糖尿病心肌病是一种独立、特异的心肌病,与糖尿病患者发生心力衰竭和死亡率升高密切相关。高血糖引起的心血管并发症涉及心肌病变和血管病变、心肌细胞结构的改变、信号通路和炎症因子的改变等,导致心肌纤维化、心肌肥厚、心脏肥大、心力衰竭和心律失常。综述了糖尿病心肌病发病机制中研究较多的几条信号通路,探究各信号通路在糖尿病心肌病发生、发展过程中对心脏的保护(损伤)作用的相关研究进展。  相似文献   

13.
The heart is capable of utilizing a variety of substrates to produce the necessary ATP for cardiac function. AMP-activated protein kinase (AMPK) has emerged as a key regulator of cellular energy homeostasis and coordinates multiple catabolic and anabolic pathways in the heart. During times of acute metabolic stresses, cardiac AMPK activation seems to be primarily involved in increasing energy-generating pathways to maintain or restore intracellular ATP levels. In acute situations such as mild ischemia or short durations of severe ischemia, activation of cardiac AMPK appears to be necessary for cardiac myocyte function and survival by stimulating ATP generation via increased glycolysis and accelerated fatty acid oxidation. Whereas AMPK activation may be essential for adaptation of cardiac energy metabolism to acute and/or minor metabolic stresses, it is unknown whether AMPK activation becomes maladaptive in certain chronic disease states and/or extreme energetic stresses. However, alterations in cardiac AMPK activity are associated with a number of cardiovascular-related diseases such as pathological cardiac hypertrophy, myocardial ischemia, glycogen storage cardiomyopathy, and Wolff-Parkinson-White syndrome, suggesting the possibility of a maladaptive role. Although the precise role AMPK plays in the diseased heart is still in question, it is clear that AMPK is a major regulator of cardiac energy metabolism. The consequences of alterations in AMPK activity and subsequent cardiac energy metabolism in the healthy and the diseased heart will be discussed.  相似文献   

14.
While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart.  相似文献   

15.
Nitric oxide and the enigma of cardiac hypertrophy   总被引:6,自引:0,他引:6  
In pathological conditions associated with persistent increases in hemodynamic workload (old myocardial infarction, high blood pressure, valvular heart disease), a number of signalling pathways are activated in the heart, all of which promote hypertrophic growth of the heart, characterised at the cellular level by increases in individual cardiac myocyte size. Some of these pathways are required for a successful adaptation to cardiac injury. Other pathways are maladaptive, however, as they lead to progressive contractile dysfunction and heart failure. The free radical gas nitric oxide and natriuretic peptides, both of which are produced in the heart, have emerged as endogenous inhibitors of maladaptive hypertrophy signalling. Overall, it appears that cardiac hypertrophy is controlled by an interplay of pro- and antihypertrophic signalling networks. This delicate balance can tip towards adaptation or heart failure. In the future, patients living with cardiac disease may benefit from therapeutic strategies targeting maladaptive hypertrophy signalling pathways.  相似文献   

16.
Patients with type 2 diabetes (T2D) are at increased risk for cardiovascular diseases including diabetic cardiomyopathy, which is ventricular dysfunction independent of underlying coronary artery disease and/or hypertension. With numerous advancements in our ability to detect ventricular dysfunction, as well as the molecular mechanisms contributing to ventricular dysfunction in diabetic patients, it is now appreciated that diabetic cardiomyopathy is becoming more prevalent in our population. In spite of these advancements, we do not have any specific therapies currently approved for treating this condition. As obesity increases the risk for both T2D and cardiovascular disease, it has been postulated that obesity-mediated alterations in myocardial lipid metabolism are critical to the pathophysiology of diabetic cardiomyopathy. Indeed, animal studies have provided strong evidence that alterations in either myocardial fatty acid uptake or fatty acid β-oxidation lead to the accumulation of various lipid intermediates including triacylglycerol, diacylglycerol, ceramide, long-chain acyl CoA, acylcarnitine, and many others that are tightly linked to the progression of ventricular dysfunction. We review herein why lipid intermediates accumulate in the heart during obesity and/or T2D, with a focus on which of these various lipid intermediates may be responsible for cardiac lipotoxicity, and whether findings in animal models are relevant to humans. An improved understanding of how these lipid intermediates accumulate in the heart and how they produce cardiac toxicity may lead to the discovery of novel targets to pursue for the treatment of human diabetic cardiomyopathy. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

17.
The intermediate filament protein desmin is an integral component of the cardiomyocyte and serves to maintain the overall structure and cytoskeletal organization within striated muscle cells. Desmin-related myopathy can be caused by mutations in desmin or associated proteins, which leads to intracellular accumulation of misfolded protein and production of soluble pre-amyloid oligomers, which leads to weakened skeletal and cardiac muscle. In this review, we examine the cellular phenotypes in relevant animal models of desmin-related cardiomyopathy. These models display characteristic sarcoplasmic protein aggregates. Aberrant protein aggregation leads to mitochondrial dysfunction, abnormal metabolism, and altered cardiomyocyte structure. These deficits to cardiomyocyte function may stem from impaired cellular proteolytic mechanisms. The data obtained from these models allow a more complete picture of the pathology in desmin-related cardiomyopathy to be described. Moreover, these studies highlight the importance of desmin in maintaining cardiomyocyte structure and illustrate how disrupting this network can be deleterious to the heart. We emphasize the similarities observed between desmin-related cardiomyopathy and other protein conformational disorders and speculate that therapies to treat this disease may be broadly applicable to diverse protein aggregation-based disorders.  相似文献   

18.
Left ventricle hypertrophy is induced by a number of stimuli and can lead to cardiomyopathy and heart failure. The hypertrophic response is achieved by enlargement of the cardiac myocytes and is regulated by multiple signaling pathways, with the D-type cyclins playing a crucial role. Induction of cyclin D in adult cardiac myocytes leads to activation of cyclin-dependent kinases 4 and 6 and a partial progress through the cell cycle. Therefore, these pathways are attractive therapeutic target for treatment of heart failure and hypertrophy. We discuss the activity of cyclin D and other cell cycle regulatory proteins in left ventricle hypertrophy and whether the hypertrophic signaling pathways converge at the D-type cyclins.  相似文献   

19.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease, associated with a high risk of sudden cardiac death. ARVC has been termed a ‘disease of the desmosome’ based on the fact that in many cases, it is caused by mutations in genes encoding desmosomal proteins at the specialised intercellular junctions between cardiomyocytes, the intercalated discs. Desmosomes maintain the structural integrity of the ventricular myocardium and are also implicated in signal transduction pathways. Mutated desmosomal proteins are thought to cause detachment of cardiac myocytes by the loss of cellular adhesions and also affect signalling pathways, leading to cell death and substitution by fibrofatty adipocytic tissue. However, mutations in desmosomal proteins are not the sole cause for ARVC as mutations in non-desmosomal genes were also implicated in its pathogenesis. This review will consider the pathology, genetic basis and mechanisms of pathogenesis for ARVC.  相似文献   

20.
Mitochondrial complex I, the primary entry point for electrons into the mitochondrial respiratory chain, is both critical for aerobic respiration and a major source of reactive oxygen species. In the heart, chronic dysfunction driving cardiomyopathy is frequently associated with decreased complex I activity, from both genetic and environmental causes. To examine the functional relationship between complex I disruption and cardiac dysfunction we used an established mouse model of mild and chronic complex I inhibition through heart-specific Ndufs4 gene ablation. Heart-specific Ndufs4-null mice had a decrease of ∼50% in complex I activity within the heart, and developed severe hypertrophic cardiomyopathy as assessed by magnetic resonance imaging. The decrease in complex I activity, and associated cardiac dysfunction, occurred absent an increase in mitochondrial hydrogen peroxide levels in vivo, accumulation of markers of oxidative damage, induction of apoptosis, or tissue fibrosis. Taken together, these results indicate that diminished complex I activity in the heart alone is sufficient to drive hypertrophic cardiomyopathy independently of alterations in levels of mitochondrial hydrogen peroxide or oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号