首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An OmpR gene, named OmpR503, was cloned from the Antarctic psychrotrophic bacterium Psychrobacter sp. G according to its genomic draft. The deduced amino acid sequences of OmpR503 were highly conserved with other known protein members of OmpR family. qRT-PCR analysis showed that the expression of OmpR503 gene was significantly enhanced by high salinity (90, 120). The expression of OmpR503 gene was also significantly increased at low temperature (0, 10 °C), whereas depressed at high temperature (30 °C). When the strain was subjected to combined stress (0 °C with a salinity of 90), the expression of OmpR503 gene was increased significantly, which was up to 3.0-fold. In Antarctica, freezing tolerance of psychrotrophic bacteria is often accompanied by tolerance to osmotic stress caused by a lack of free water, thus the cold inducibility of OmpR503 gene might help the strain adapt to the harsh environment more efficiently.  相似文献   

2.
Temperature and salinity fluctuations are two of the most important factors affecting the growth of polar bacteria. In an attempt to better understand the function of heat-shock proteins (HSPs) in the adaptive mechanisms of the Antarctic psychrotrophic bacterium Psychrobacter sp. G to such conditions, genes Hsp845, Hsp2538, Hsp2666, and Hsp2667 were cloned on the basis of the draft genome. The expression characteristics of these HSP genes under different stress conditions were analyzed by the qRT-PCR method. Expression of Hsp845 and Hsp2667 was inhibited significantly by low temperature (0 and 10 °C, respectively). There was no difference of expression when Hsp2538 and Hsp2666 were exposed to 0 °C but the expression of Hsp2666 was inhibited when exposed to 10 °C. Expression of Hsp2538 and Hsp2667 was not sensitive but expression of Hsp845 and Hsp2666 was increased at low salinity (0 and 15, respectively). Expression of the four HSP genes was enhanced at high salinity (90 and 120) and at high temperature independent of salinity. By contrast, low temperature had no significant effect independent of salinity.  相似文献   

3.
The aim of this study was to determine acute toxicity in the post larvae of the white shrimp Litopenaeus vannamei after 96 h of exposure to dissolved arsenic under three different temperatures and salinity conditions. Recent reports have shown an increase in the presence of this metalloid in coastal waters, estuaries, and lagoons along the Mexican coast. The white shrimp stands out for its adaptability to temperature and salinity changes and for being the main product for many commercial fisheries; it has the highest volume of oceanic capture and production in Mexican shrimp farms. Lethal concentrations (LC50–96 h) were obtained at nine different combinations (3?×?3 combinations in total) of temperature (20, 25, and 30 °C) and salinity (17, 25, and 33) showing mean LC50–96 h values (±standard error) of 9.13?±?0.76, 9.17?±?0.56, and 6.23?±?0.57 mgAs?L?1(at 20 °C and 17, 25, and 33 salinity); 12.29?±?2.09, 8.70?±?0.82, and 8.03?±?0.59 mgAs?L?1 (at 25 °C and 17, 25, and 33 salinity); and 7.84?±?1.30, 8.49?±?1.40, and 7.54?±?0.51 mgAs?L?1 (at 30 °C and 17, 25, and 33 salinity), respectively. No significant differences were observed for the optimal temperature and isosmotic point of maintenance (25 °C–S 25) for the species, with respect to the other experimental conditions tested, except for at 20 °C–S 33, which was the most toxic. Toxicity under 20 °C–S 33 conditions was also higher than 25 °C–S 17 and 20 °C (S 17 or 25). The least toxic condition was 25 °C–S 17. All this suggests that the toxic effect of arsenic is not affected by temperature changes; it depends on the osmoregulatory pattern developed by the shrimp, either hyperosmotic at low salinity or hiposmotic at high salinity, as observed at least on the extreme salinity conditions here tested (17 and 33). However, further studies testing salinities near the isosmotic point (between 20 and 30 salinities) are needed to clarify these mechanisms.  相似文献   

4.
The global temperature increase has significant implications on the survival of microalgae which form the basis of all aquatic food webs. The aim of this study was to compare the response of similar taxa of microalgae from the Antarctic (Chlamydomonas UMACC 229, Chlorella UMACC 237, and Navicula glaciei UMACC 231), temperate (Chlamydomonas augustae UMACC 247, Chlorella vulgaris UMACC 248, and Navicula incerta UMACC 249), and tropical (C. augustae UMACC 246, C. vulgaris UMACC 001, and Amphiprora UMACC 239) regions to changing temperature. The Antarctic, temperate, and tropical strains were grown over specific temperature ranges of 4 °C to 30 °C, 4 °C to 32 °C, and 13 °C to 38 °C, respectively. The three Antarctic strains survived at temperatures much higher than their ambient regime. In comparison, the tropical strains are already growing at their upper temperature limits. The three Chlorella strains from different regions are eurythermal, with a large overlap on tolerance ranging from 4 °C to 38 °C. The specific growth rate (μ) of the Antarctic Navicula decreased (<0.34 day?1) at temperatures above 4 °C, showing it to be sensitive to temperature increase. If further warming of Earth occurs, N. glaciei UMACC 231 is likely to have the most deleterious consequences than the other two Antarctic microalgae studied. The percentage of polyunsaturated fatty acids (PUFA) decreased with increasing temperature in the Antarctic Navicula. As temperature increases, the growth and nutritional value of this commonly occurring diatom in the Antarctic may decrease, with consequences for the aquatic food web. Of the three Chlamydomonas strains, only the Antarctic strain produced predominantly PUFA, especially 16:3 (48.4–57.2 % total fatty acids).  相似文献   

5.
6.
Antarctic marine invertebrates live in a cold, thermally stable environment and cannot tolerate large changes in body temperature (i.e. they are stenothermal). Their temperate relatives, by contrast, are eurythermal, living in warmer and thermally more variable environments. Have these different environments influenced how specific behaviours are affected by changes of temperature? This question was addressed in two temperate crustaceans, the decapod Carcinus maenas and isopod Ligia oceanica, and two Antarctic crustaceans, the isopod Glyptonotus antarcticus and amphipod Paraceradocus gibber. The thermal dependence of walking speed was analysed by contrasting the slopes of the linear part of each species’ behavioural curve. Over the temperature ranges analysed, the temperature sensitivity of walking speed in the stenotherms was 13–23% that of the eurytherms when measured in body lengths s?1. There was a linear relationship between walking speed and temperature up to +4.5°C in the Antarctic species G. antarcticus and P. gibber. Elevating temperature by up to 3.5°C above the maximum temperature experienced in the Antarctic (+1°C), does not lead to an acute breakdown of motor coordination. We describe for the first time the righting behaviour of G. antarcticus. The mean time-to-right tended to a minimum on warming from ?2 to+5°C, but this trend was not statistically significant. Our results suggest that the physiological adaptations which permit continued activity at low Antarctic temperatures have resulted in a lower thermal dependence of activity in Antarctic species, compared to related temperate species.  相似文献   

7.
Oxygen consumption rates of stage I Macrobrachium holthuisi Genofre & Lobão zoeae were measured in 24 different temperature and salinity combinations using Cartesian diver microrespirometers. Metabolic rates varied little with salinity at 15°C while at 20°C a marked elevation occurred in 0 and 35‰ At 25°C, a slight elevation occurred in 0‰; rates remained constant, however, in the other salinities. At 30°C, respiratory rates were similar to those recorded at 25°C except for decreases at 0 and 28‰ salinity. Q10 values in the different salinities were usually highest between 15 and 20°C. Statistical analyses showed that while both temperature, salinity and their interaction significantly influenced larval respiratory rates, temperature had the more pronouced effect. Larval metabolism is salinity independent over the salinity range encountered in the larval biotope (7–21‰) at temperatures of 15–30°C.  相似文献   

8.
Adaptivity to short-term and long-term changes in water temperature and salinity was studied in larvae of the bivalve mollusk Mytilus trossulus. It was shown that water temperature of 4°C mostly suppressed growth and development of larvae. A temperature of 20°C promoted an enhanced larval growth and development. Though a temperature of 20°C caused enhanced larval growth, the temperature was not optimal, while its effect caused quality diversity of larval development, owing to the difference in their growth rates. Such diversity was not observed at moderate temperatures of 10 and 15°C. At 20°C, fast-growing mussel larvae were very sensitive to temperature drops. Growth of slowly-growing individuals did not depend on temperature in the range of 10 to 20°C. Daily temperature variations by 3–8°C did not markedly affect growth and development of the larvae. A continuous 24-h exposure to temperature drops by 3–8°C did not influence these very important physiological characteristics either. A salinity drop down to 8‰ exerted an adverse effect only on early larvae. Later on, the larvae showed their ability to adapt to such a strong desalination. The negative effect of reduced salinity (to 8‰) upon mussel larvae was increased at a temperature increase to 20°C.  相似文献   

9.
10.
Seaweed cultivation is imperative to augment increasing industrial demand. Ulva fasciata Delile is a potential seaweed for cultivation with applications in food industries. There is a renewed interest in large-scale aquaculture of this species in India due to its envisaged demand in snack food products. In the present study, we have successfully demonstrated the possibility of inducing zoospores in vegetative tissue, effective regeneration and improved growth in this seaweed by manipulating salinity (from 15 to 30 psu) and temperature (from 15 to 35°C). The optimum salinity and temperature requirement for zoospores induction were found to be 15 psu and 25°C, respectively. The quadriflagellate zoospores showed negative phototaxis and the settlement and germination pattern similar to several other green seaweeds. The optimum regeneration (78.53?±?10.05%) was recorded at 25°C and 30 psu salinity. The maximum daily growth rate (16.1?±?0.28%) was at 25°C and 30 psu salinity which corresponded to the field conditions. This method could be further refined at nursery culture to achieve artificial seeding essential for the success of commercial cultivation of this seaweed.  相似文献   

11.
The use of microalgae for biofuel production has the potential to reduce fossil fuel consumption. Ideal candidate species of microalgae for bio-oil production need both relatively high growth rates and lipid content. Here, we report on the effects of temperature, nutrients (N, Si), and salinity on growth rates and lipid content of the common freshwater diatom, Fragilaria capucina (Desm), isolated from western Lake Erie. At low NaCl salinity, growth rate increased rapidly from 10 to 20°C, and then further increased slowly from 20 to 30°C, with a maximum specific growth rate of 0.61?day?1. Growth rate declined with increasing salinity (e.g., reduced by ca. 50 and 100% at 137 and 274?mmol?L?1 NaCl, respectively), and increased with increased N and Si concentration until ca. 100?μmol?L?1 for each (with >85% of maximum growth rate at 10?μmol?L?1). Lipid content (% total lipid per dry mass) in nutrient-replete cultures was 14% and (1) increased to >30% at low N and, especially, low Si; (2) was lower at 30°C vs. 20 or 10°C; and (3) decreased with salinity. Thus, F. capucina accumulates lipid to high levels even under N, Si, and temperature levels that permit a high growth rate for this species, and hence, this species is a candidate for use in biofuel production.  相似文献   

12.
13.
The effects of concurrent ocean warming and acidification on Antarctic marine benthos warrant investigation as little is known about potential synergies between these climate change stressors. We examined the interactive effects of warming and acidification on fertilization and embryonic development of the ecologically important sea urchin Sterechinus neumayeri reared from fertilization in elevated temperature (+1.5°C and 3°C) and decreased pH (?0.3 and ?0.5 pH units) treatments. Fertilization using gametes from multiple males and females, to represent populations of spawners, was resilient to acidification at ambient temperature (0°C). At elevated temperatures, there was a negative interactive effect of temperature and pH on percentage of fertilization (11% reduction at 3°C). For cleavage stage embryos, there was a significant, but small reduction (6%) in the percentage of normal embryos at pH 7.5. For blastulae, a 10–11% decrease in normal development occurred in the +3°C treatments across all pH levels. Our results highlight the importance of considering the impacts of both temperature and pH in assessing the life history response of S. neumayeri in a changing polar ocean. While fertilization and development to the blastula stage were robust to levels of temperature and pH change predicted over coming decades, deleterious interactive effects were evident between these stressors at levels projected to occur by 2100 and beyond.  相似文献   

14.
Abstract

Limonium mansanetianum is catalogued as critically threatened (CR) species and it is included in Valencian Catalogue of Threatened Plant Species. Limonium mansanetianum is a gypsicolous species, which only lives in a restricted area to south-centre of Valencia province (Spain). The species is a low-branched woody shrub with summer flowering. The influence of incubation temperature (10°, 15°, 20° and 25°/20?°C) and salinity (0%–3.0% NaCl) on seed germination of L. mansanetianum was studied. Best seed germination was obtained in distilled water controls. Seed germination decreased with an increase in salinity and few seeds germinated at 2.5% and 3.0% NaCl. Optimal temperature regime for germination was 15?°C where germination in 0.5% and 1.0% NaCl was not affected. Recovery and hypersaline conditions experiments showed that L. mansanetianum seeds displayed a greater tolerance to high salinity and temperature stress before germination.  相似文献   

15.
Mutation and immobilization techniques were applied to uridine phosphorylase (UP) from Escherichia coli in order to enhance its thermal stability and hence productivity in a biocatalytic reaction. UP was evolved by iterative saturation mutagenesis. Compared to the wild type enzyme, which had a temperature optimum of 40 °C and a half-life of 9.89 h at 60 °C, the selected mutant had a temperature optimum of 60 °C and a half-life of 17.3 h at 60 °C. Self-immobilization of the native UP as a Spherezyme showed a 3.3 fold increase in thermostability while immobilized mutant enzyme showed a 4.4 fold increase in thermostability when compared to native UP. Combining UP with the purine nucleoside phosphorylase from Bacillus halodurans allows for synthesis of 5-methyluridine (a pharmaceutical intermediate) from guanosine and thymine in a one-pot transglycosylation reaction. Replacing the wild type UP with the mutant allowed for an increase in reaction temperature to 65 °C and increased the reaction productivity from 10 to 31 g l−1 h−1.  相似文献   

16.
Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to low temperature after cold shock includes elevated levels of cold shock proteins (CSPs) and that the levels of CSPs are also elevated after treatment with high hydrostatic pressure (HHP). Two-dimensional gel electrophoresis combined with Western blotting performed with anti-CspB of Bacillus subtilis was used to identify four 7-kDa proteins, designated Csp1, Csp2, Csp3, and Csp4. In addition, Southern blotting revealed four chromosomal DNA fragments that reacted with a csp probe, which also indicated that a CSP family is present in L. monocytogenes LO28. After a cold shock in which the temperature was decreased from 37°C to 10°C the levels of Csp1 and Csp3 increased 10- and 3.5-fold, respectively, but the levels of Csp2 and Csp4 were not elevated. Pressurization of L. monocytogenes LO28 cells resulted in 3.5- and 2-fold increases in the levels of Csp1 and Csp2, respectively. Strikingly, the level of survival after pressurization of cold-shocked cells was 100-fold higher than that of cells growing exponentially at 37°C. These findings imply that cold-shocked cells are protected from HHP treatment, which may affect the efficiency of combined preservation techniques.  相似文献   

17.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

18.
Global warming is a reality and its effects have been widely studied. However, the consequences for marine invertebrates remain poorly understood. Thus, the present study proposed to evaluate the effect of elevated temperature on the innate immune system of Antarctic sea urchin Sterechinus neumayeri. Sea urchins were collected nearby Brazilian Antarctic Station ??Comandante Ferraz?? and exposed to 0 (control), 2 and 4°C for periods of 48?h, 2, 7 and 14?days. After the experimental periods, coelomic fluid was collected in order to perform the following analyses: coelomocytes differential counting, phagocytic response, adhesion and spreading coelomocytes assay, intranuclear iron crystalloid and ultra structural analysis of coelomocytes. The red sphere cell was considered a biomarker for heat stress, as they increased in acute stress. Besides that, a significant increase in phagocytic indexes was observed at 2°C coinciding with a significant increase of intranuclear iron crystalloid at the same temperature and same time period. Furthermore, significant alterations in cell adhesion and spreading were observed in elevated temperatures. The ultra structural analysis of coelomocytes showed no significant difference across treatments. This was the first time that innate immune response alterations were observed in response to elevated temperature in a Polar echinoid.  相似文献   

19.
20.
The marine red alga Gracilaria crassa was investigated for its proximate composition, minerals, fatty acids, amino acids, and agar content to decipher its nutritional implications. The growth performance and pigments were studied under different combinations of temperature and salinity. On a dry weight basis the total lipid content was 1.30?±?0.05 %, protein was 5.18?±?0.64 %, carbohydrate was 42.0?±?1.2 %, ash was 43.18?±?1.15 %, and agar content was 21.52?±?0.73 %. Appreciable amounts of macro-, micro-nutrients (K?>?Na, Ca, Mg, and Fe), and essential amino acids (Ileu, His, Thr, Leu, and Lys) were found. Palmitic, stearic acid, and arachidonic acid were major fatty acids detected. The alga showed maximum daily growth rate (DGR %) 5.8?±?0.09 % at 25 °C, 35 ‰ salinity. The highest content of pigment R-phycoerythrin (444.7?±?1.9 μg g?1 fresh weight (FW) basis) was obtained at 25 ‰ salinity at 35 °C while that of R-phycocyanin (476.3?±?2.3 μg g?1 DW) at 30 ‰ salinity at 30 °C. This study revealed that this alga can be utilized as a potential source for food and feed. The data generated on best growth conditions will be very useful for farming of G. crassa in open sea. This alga could be used for production of natural colorants at defined control condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号