首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Permanent silencing of E2F-dependent genes is a hallmark of the irreversible cell cycle exit that characterizes terminally differentiated and senescent cells. The determinant of this silencing during senescence has been proposed to be the binding of the retinoblastoma protein Rb and the consequent methylation of H3K9. During ex vivo skeletal muscle differentiation, while most cells terminally differentiate and form myotubes, a subset of myoblasts remains quiescent and can be reinduced by growth factor stimulation to enter the cell cycle. Thus, differentiating cells are composed of two different populations: one in which E2F-dependent genes are permanently repressed and the other not. We observed that, in a manner reminiscent to senescent cells, permanent silencing of the E2F-dependent cdc6, dhfr, and p107 promoters in myotubes was associated with a specific increase in H3K9 trimethylation. To investigate the role of Rb in this process, we developed a reliable method to detect Rb recruitment by chromatin immunoprecipitation. Surprisingly, we observed that Rb was recruited to these promoters more efficiently in quiescent cells than in myotubes. Thus, our data indicate that during muscle differentiation, permanent silencing and H3K9 trimethylation of some E2F-dependent genes are not directly specified by Rb binding, in contrast to what is proposed for senescence.  相似文献   

2.
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.  相似文献   

3.
4.
The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 +/- HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome.  相似文献   

5.
The presence of H3K9me3 and heterochromatin protein 1 (HP1) are hallmarks of heterochromatin conserved in eukaryotes. The spreading and maintenance of H3K9me3 is effected by the functional interplay between the H3K9me3-specific histone methyltransferase Suv39h1 and HP1. This interplay is complex in mammals because the three HP1 isoforms, HP1α, β, and γ, are thought to play a redundant role in Suv39h1-dependent deposition of H3K9me3 in pericentric heterochromatin (PCH). Here, we demonstrate that despite this redundancy, HP1α and, to a lesser extent, HP1γ have a closer functional link to Suv39h1, compared to HP1β. HP1α and γ preferentially interact in vivo with Suv39h1, regulate its dynamics in heterochromatin, and increase Suv39h1 protein stability through an inhibition of MDM2-dependent Suv39h1-K87 polyubiquitination. The reverse is also observed, where Suv39h1 increases HP1α stability compared HP1β and γ. The interplay between Suv39h1 and HP1 isoforms appears to be relevant under genotoxic stress. Specifically, loss of HP1α and γ isoforms inhibits the upregulation of Suv39h1 and H3K9me3 that is observed under stress conditions. Reciprocally, Suv39h1 deficiency abrogates stress-dependent upregulation of HP1α and γ, and enhances HP1β levels. Our work defines a specific role for HP1 isoforms in regulating Suv39h1 function under stress via a feedback mechanism that likely regulates heterochromatin formation.  相似文献   

6.
7.
8.
9.
10.
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.  相似文献   

11.
Pericentric regions form epigenetically organized silent heterochromatin structures that accumulate histone H3 lysine 9 trimethylation (H3K9me3) and HP1. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1, a methylated H3K9-binding protein. However, it is not well characterized how HP1 interaction is important for Suv39h accumulation and Suv39h-mediated H3K9me3 formation at the pericentromere. To address this, we introduced the HP1 binding-defective N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient embryonic stem cells. Interestingly, pericentric accumulation of ΔN and ΔN-mediated H3K9me3 was observed to recover, but HP1 accumulation was only marginally restored. ΔN also rescued DNA methyltransferase Dnmt3a and -3b accumulation and DNA methylation of the pericentromere. In contrast, other pericentric heterochromatin features, such as ATRX protein association and H4K20me3, were not recovered. Finally, derepressed major satellite repeats were partially silenced by ΔN expression. These findings clearly showed that the Suv39h-HP1 binding is dispensable for pericentric H3K9me3 and DNA methylation, but this interaction and HP1 recruitment/accumulation seem to be crucial for complete formation of heterochromatin.  相似文献   

12.
The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila.  相似文献   

13.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

14.
15.
The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1alpha, HP1beta, and HP1gamma in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1alpha, HP1beta, and HP1gamma from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1alpha, HP1beta, and HP1gamma at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.  相似文献   

16.
The pocket protein family of tumor suppressors, and Rb specifically, have been implicated as controlling terminal differentiation in many tissues, including the heart. To establish the biological functions of Rb in the heart and overcome the early lethality caused by germ line deletion of Rb, we used a Cre/loxP system to create conditional, heart-specific Rb-deficient mice. Mice that are deficient in Rb exclusively in cardiac myocytes (CRbL/L) are born with the expected Mendelian distribution, and the adult mice displayed no change in heart size, myocyte cell cycle distribution, myocyte apoptosis, or mechanical function. Since both Rb and p130 are expressed in the adult myocardium, we created double-knockout mice (CRbL/L p130-/-) to determine it these proteins have a shared role in regulating cardiac myocyte cell cycle progression. Adult CRbL/L p130-/- mice demonstrated a threefold increase in the heart weight-to-body weight ratio and showed increased numbers of bromodeoxyuridine- and phosphorylated histone H3-positive nuclei, consistent with persistent myocyte cycling. Likewise, the combined deletion of Rb plus p130 up-regulated myocardial expression of Myc, E2F-1, and G1 cyclin-dependent kinase activities, synergistically. Thus, Rb and p130 have overlapping functional roles in vivo to suppress cell cycle activators, including Myc, and maintain quiescence in postnatal cardiac muscle.  相似文献   

17.
Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase Suppressor of variegation 39 (Suv39H1/H2). How this intermediate methylation state is achieved and how it is targeted to the correct place at the right time is not yet known. Here, we show that the histone H3K9 methyltransferase SetDB1 associates with the specific heterochromatin protein 1α (HP1α)–chromatin assembly factor 1 (CAF1) chaperone complex. This complex monomethylates K9 on non‐nucleosomal histone H3. Therefore, the heterochromatic HP1α–CAF1–SetDB1 complex probably provides H3K9me1 for subsequent trimethylation by Suv39H1/H2 in pericentric regions. The connection of CAF1 with DNA replication, HP1α with heterochromatin formation and SetDB1 for H3K9me1 suggests a highly coordinated mechanism to ensure the propagation of H3K9me3 in pericentric heterochromatin during DNA replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号