首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyl radical induced formation of a DNA-protein cross-link involving thymine and tyrosine in nucleohistone is described. Hydroxyl radicals were generated in N2O-saturated aqueous solution by ionizing radiation. Samples of nucleohistone were hydrolyzed with HCl and trimethylsilylated. Analysis of irradiated samples by gas chromatography-mass spectrometry with selected-ion monitoring showed the presence of a thymine-tyrosine cross-link on the basis of typical fragment ions from the previously known mass spectrum of its trimethylsilyl derivative. The yield of this DNA-protein cross-link in nucleohistone was measured at incrementing doses of radiation and found to be a linear function of radiation dose between 14 and 300 Gy (J.kg-1). This yield amounted to 0.003 mumol.J-1. The mechanism of formation of this DNA-protein cross-link is thought to result from H atom abstraction by hydroxyl radicals from the methyl group of thymine followed by the addition of the resultant thymine radical to the carbon 3 position of the tyrosine ring and subsequent oxidation of the adduct radical.  相似文献   

2.
DNA-protein cross-links are formed when living cells or isolated chromatin is exposed to ionizing radiation. Little is known about the actual cross-linked products of DNA and proteins. In this work, a novel hydroxyl radical induced cross-link of thymine and tyrosine has been isolated along with a tyrosine dimer by high-performance liquid chromatography of aqueous mixtures of tyrosine and thymine that had been exposed to hydroxyl radicals generated by ionizing radiation. The isolated compounds have been examined by gas chromatography-mass spectrometry, high-resolution mass spectrometry, and 1H and 13C nuclear magnetic resonance spectroscopy. The structure of the thymine-tyrosine cross-link has been identified as the product from the formation of a covalent bond between the methyl group of the thymine and carbon 3 of the tyrosine ring. In addition, the 3,3' tyrosine dimer was isolated and characterized. The mechanism of the formation of these compounds is discussed. This work presents the first complete chemical characterization of a hydroxyl radical induced DNA base-amino acid cross-link.  相似文献   

3.
We report on the elucidation of DNA-protein cross-links formed in isolated mammalian chromatin upon treatment with H2O2 in the presence of iron or copper ions. Analysis of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization showed the presence of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)methyl]-L-tyrosine (thymine-tyrosine cross-link) on the basis of the gas chromatographic and mass spectrometric characteristics of the trimethylsilylated authentic compound. Other DNA-protein cross-links involving thymine and the aliphatic amino acids and cytosine and tyrosine, which were known to occur in nucleohistone gamma-irradiated under anoxic conditions, were not observed. This was due to inhibition by oxygen as clearly shown by experiments that were carried out using ionizing radiation under both oxic and anoxic conditions instead of using H2O2 and metal ions. However, oxygen did not inhibit formation of the thymine-tyrosine cross-link in gamma-irradiated chromatin or in chromatin treated with H2O2 and metal ions. The yield of the thymine-tyrosine cross-link was higher upon treatment with H2O2/chelated Fe3+ ions than with H2O2/unchelated Fe3+ ions. By contrast, H2O2/unchelated Cu2+ ions produced a higher yield than H2O2/chelated Cu2+ ions. Almost complete inhibition of cross-link formation was provided by the hydroxyl radical scavengers mannitol and dimethyl sulfoxide when H2O2/chelated metal ions were used. On the other hand, scavengers only partially inhibited formation of cross-links when H2O2/unchelated metal ions were used, possibly indicating the site-specific nature of cross-linking. Superoxide dismutase afforded partial inhibition only when chelated ions were used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A gamma-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone gamma-irradiated in N2O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J.kg-1). This yield amounted to 0.05 nmol.J-1. Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed.  相似文献   

5.
Formation of DNA-protein crosslinks (DPCs) in mammalian cells upon treatment with iron or copper ions was investigated. Cultured murine hybridoma cells were treated with Fe(II) or Cu(II) ions by addition to the culture medium at various concentrations. Subsequently, chromatin samples were isolated from treated and control cells. Analyses of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization revealed a significant increase over the background amount of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-methyl]- -tyrosine (Thy-Tyr crosslink) in cells treated with Fe(II) ions in the concentration range of 0.01 to 1 mM. In contrast, Cu(II) ions at the same concentrations did not produce this DPC in cells. No DNA base damage was observed in cells treated with Cu(II) ions, either. Preincubation of cells with ascorbic acid or coincubation with dimethyl sulfoxide did not significantly alleviate the Fe(II) ion-mediated formation of DPCs. In addition, a modified fluorometric analysis of DNA unwinding assay was used to detect DPCs formed in cells. Fe(II) ions caused significant formation of DPCs, but Cu(II) ions did not. The nature of the Fe(II)-mediated DPCs suggests the involvement of the hydroxyl radical in their formation. The Thy-Tyr crosslink may contribute to pathological processes associated with free radical reactions.  相似文献   

6.
The method of gel electrophoresis was used to study DNA-protein cross-link formation in fragmentized chromatin gamma-irradiated in water solutions (0.03%). By introducing changes into irradiation conditions (for instance, the use of different gases saturating the solution and the administration of radical acceptors) and by the subsequent electrophoretic analysis (treatment of the exposed chromatin by dissociating mixtures and enzymes) the authors showed a covalent nature of the cross-links in a radiation-induced DNA-protein complex and found the value of G (a cross-link) to be 0.02.  相似文献   

7.
We report on the chemical characterization of DNA base damage in chromatin of γ-irradiated cultured human cells. Chromatin was isolated from unirradiated and irradiated cells and analyzed by gas chroma-tography/mass spectrometry with selected-ion monitoring after acidic hydrolysis of chromatin and trimethylsilylation of hydrolysates. Prior to analysis of chromatin samples, experimental conditions for acidic hydrolysis were optimized by determining the relative molar response factors of modified bases under non-acidic and acidic conditions, and their release from DNA under various acidic conditions. A number of modified bases in chromatin isolated from irradiated cells were identified and quantitated. These were 5-hydroxy-5-methylhydantoin, 5-hydroxyhydantoin, 5-(hydroxymethyl)uracil, cytosine glycol, thymine glycol, 5,6-dihydroxycytosine, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine. Radiation doses ranging from 42 to 420 Gy (J . kg1) were used. Background levels of all modified bases were observed in chromatin isolated from unirradiated cells. The radiation yields of a number of modified bases were increased significantly over their background levels at a dose as low as 42 Gy. In most cases, linear dose-yield relationships were obtained up to ≈200Gy. At radiation doses higher than 420 Gy, no additional increase in the yields of modified bases was observed. The yields of guanine-derived bases amounted to ≈ 45% of the total net yield of modified bases measured, followed by almost equal yields of adenine-, cytosine- and thymine-derived bases. Modified bases identified were typical products of hydroxyl radical attack on DNA bases, indicating the involvement of hydroxyl radical, although their induction in part by the direct effect of ionizing radiation through ionization of DNA bases cannot be excluded. The yields of modified bases were lower than those previously measured after γ-irradiation of fully expanded chromatin in aqueous buffer solutions.  相似文献   

8.
Chromatin extracted from Chinese hamster lung fibroblasts has been examined for the formation of radiation-induced DNA-protein cross links, using a membrane filter assay. The relative efficiencies of the aqueous radical intermediates, OH., eaq- and O2-, were investigated. Cross links were found in gamma-irradiated isolated chromatin and in chromatin irradiated in the cell before isolation. When isolated chromatin was irradiated under conditions in which the chromosomal proteins were dissociated from the DNA, no cross links were detectable. The most efficient radical for the production of cross links in irradiated, isolated chromatin was found to be the hydroxyl radical, whereas, the superoxide radical was essentially ineffective. For chromatin irradiated in the cell before isolation, the greatest effect was seen for cells irradiated in an atmosphere of nitrous oxide, suggesting the hydroxyl radical may be involved in the formation of cross links in intact cells also. The formation of cross links in chromatin irradiated in cells before isolation was considerable less efficient than in irradiated, isolated chromatin.  相似文献   

9.
Fibroblasts are the most ubiquitous cell types within our body. They produce various factors to maintain the texture and structure of a particular organ or tissue. To identify protein factors secreted by fibroblasts and alteration of these protein factors upon oxidative stress, HCA3 human skin diploid fibroblasts were exposed to a sublethal dose of H2O2, which induces a prematurely senescent phenotype. Conditioned media from prematurely senescent cells versus control cells were analyzed for proteins using an LC-MS/MS-based proteomic technique. Collagen alpha1(VI), collagen alpha2(I), fibronectin, lumican, and matrix metalloproteinase 2 were among the proteins consistently detected from control and H2O2-treated cells. Insulin-like growth factor-binding protein-6 (IGFBP-6) consistently showed up in the conditioned medium of H2O2-treated cells but not from untreated cells. Increased IGFBP-6 production due to H2O2 treatment was confirmed by RT-PCR and Western blot analyses. While H2O2 induced a dose-dependent elevation of IGFBP-6 mRNA, Western blot analyses detected elevated levels of IGFBP-6 protein in the conditioned medium of H2O2-treated cells. In comparison, fibronectin or matrix metalloproteinase 2 did not show changes at the mRNA level in cell lysates or at the protein level in the conditioned medium by H2O2 treatment. Using several types of toxins at sublethal doses, including cis-platin, hydroxyurea, colchicine, L-mimosine, rhodamine, dithiothreitol, or N-ethylmaleimide, we found that these agents induced increases of IGFBP-6 at mRNA and protein levels. An increased level of IGFBP-6 protein was detected in the plasma of aging mice and of young mice treated with doxorubicin. These data suggest that IGFBP-6 may serve as a sensitive biomarker of cell degeneration or injury in vitro and in vivo.  相似文献   

10.
H2O2 and vanadate are known insulinomimetic agents. Together they induce insulin's bioeffects with a potency which exceeds that seen with insulin, vanadate, or H2O2 alone. Employing Western blotting with anti-P-Tyr antibodies, we have identified in Fao cells at least four proteins (pp180, 150, 114, and 100) whose P-Tyr content is rapidly increased upon treatment of the cells with 3 mM H2O2. Tyrosine phosphorylation of these and additional proteins was markedly potentiated (6-10-fold) when 100 microM sodium orthovanadate was added together with H2O2. The effects of H2O2 and vanadate on protein tyrosine phosphorylation were rapid and specific. The enhanced tyrosine phosphorylation was accompanied by a concomitant inhibition of a cytosolic protein tyrosine phosphatase activity. The latter was inhibited by 50% in 3 mM H2O2-treated cells. The inhibitory effect was augmented in the combined presence of H2O2 and vanadate. Half- and maximal effects of vanadate were obtained at 15 microM and 1 mM, respectively. Vanadate (1 mM) alone, added to the cells, had only a trivial effect on protein tyrosine phosphatase activity. A 45-s challenge with insulin (10(-7) M) of cells pretreated with H2O2 largely mimicked the potentiating effects of vanadate on protein tyrosine phosphorylation but not on protein tyrosine phosphatase activity. Our results suggest the involvement of multiple tyrosine-phosphorylation proteins in mediating the biological effects of H2O2/vanadate. Their enhanced phosphorylation can be attributed at least in part, to the inhibitory effects exerted by H2O2 alone, or in combination with vanadate, on protein tyrosine phosphatase activity. The similarity between proteins phosphorylated in Fao cells in response to H2O2/vanadate or H2O2/insulin, suggests that either treatment stimulates protein tyrosine kinases having similar substrate specificities. The insulin receptor kinase is a likely candidate as its activity is markedly enhanced either by insulin (plus H2O2) or by H2O2/vanadate.  相似文献   

11.
Oxidation of thymine with O2 was promoted by copper(I) ion generated from reaction of L-ascorbic acid (AA) with copper (II) ion. The main oxidation products were thymine glycol (TG) and N-formyl-N'-pyruvylurea (FPU). At higher concentration of O2, formation of FPU was favored, while TG was dominant at higher Cu(II) ion and lower O2 concentrations. Reaction mechanism involving hydroxy thyminyl radical was proposed.  相似文献   

12.
We investigated the effects of a cysteine residue on tyrosine nitration in several model peptides treated with myeloperoxidase (MPO), H(2)O(2), and nitrite anion (NO(2)(-)) and with horseradish peroxidase and H(2)O(2). Sequences of model peptides were acetyl-Tyr-Cys-amide (YC), acetyl-Tyr-Ala-Cys-amide (YAC), acetyl-Tyr-Ala-Ala-Cys-amide (YAAC), and acetyl-Tyr-Ala-Ala-Ala-Ala-Cys-amide (YAAAAC). Results indicate that nitration and oxidation products of tyrosyl residue in YC and other model peptides were barely detectable. A major product detected was the corresponding disulfide (e.g. YCysCysY). Spin trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) revealed thiyl adduct (e.g. DMPO-SCys-Tyr) formation from peptides (e.g. YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). The steady-state concentrations of DMPO-thiyl adducts decreased with increasing chain length of model peptides. Blocking the sulfydryl group in YC with methylmethanethiosulfonate (that formed YCSSCH(3)) totally inhibited thiyl radical formation as did substitution of Tyr with Phe (i.e. FC) in the presence of MPO/H(2)O(2)/NO(2)(-). However, increased tyrosine nitration, tyrosine dimerization, and tyrosyl radical formation were detected in the MPO/H(2)O(2)/NO(2)(-)/YCSSCH(3) system. Increased formation of S-nitrosated YC (YCysNO) was detected in the MPO/H(2)O(2)/(*)NO system. We conclude that a rapid intramolecular electron transfer reaction between the tyrosyl radical and the Cys residue impedes tyrosine nitration and induces corresponding thiyl radical and nitrosocysteine product. Implications of this novel intramolecular electron transfer mechanism in protein nitration and nitrosation are discussed.  相似文献   

13.
Phosphorylation of replaceable histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called gamma-H2AX can be used as an effective marker for DSBs repair and DNA damage response. Using Western blotting and immunohistochemistry techniques we have studied here the influence of exogenous nicotinamide adenine dinucleotide phosphate (NADP) which could potentially increase the intracellular level of NAD+ and on the level of gamma-H2AX formation in mouse heart cells after ionizing radiation (IR). We have found that injection of NAD+ in different doses immediately after IR causes an increased level of gamma-H2AX in mouse heart cells 20 min after IR at the dose of 3 Gy compared to control mice after IR exposure. It indicates that it could be a relationship between intracellular NAD+ content and DNA damage response in vivo.  相似文献   

14.
Modification of DNA bases in mammalian chromatin in aqueous suspension by ionizing radiation generated free radicals was investigated. Argon, air, N2O, and N2O/O2 were used for saturation of the aqueous system in order to provide different radical environments. Radiation doses ranging from 20 to 200 Gy (J.kg-1) were used. Thirteen products resulting from radical interactions with pyrimidines and purines in chromatin were identified and quantitated by using the technique of gas chromatography/mass spectrometry with selected-ion monitoring after acidic hydrolysis and trimethylsilylation of chromatin. The methodology used permitted analysis of the modified bases directly in chromatin without the necessity of isolation of DNA from chromatin first. The results indicate that the radical environment provided by the presence of different gases in the system had a substantial effect on the types of products and their quantities. Some products were produced only in the presence of oxygen, whereas other products were detected only in the absence of oxygen. Products produced under all four gaseous conditions were also observed. Generally, the presence of oxygen in the system increased the yields of the products with the exception of formamidopyrimidines. Superoxide radical formed in the presence of air, and to a lesser extent in the presence of N2O/O2, had no effect on product formation. The presence of oxygen dramatically increased the yields of 8-hydroxypurines, whereas the yields of formamidopyrimidines were not affected by oxygen, although these products result from respective oxidation and reduction of the same hydroxyl-adduct radicals of purines. The yields of the products were much lower than those observed previously with DNA.  相似文献   

15.
The concentration of free cytosolic Ca2+ ([Ca2+]i), 45Ca2+ entry and the level of reduced glutathione (GSH) after x-irradiation in a dose of 4.5 Gy or 0.1 mM H2O2-treatment were investigated in isolated rat thymocytes during the period preceding electrophoretically detected DNA intranucleosomal fragmentation. Using fura-2 it was shown that the level of [Ca2+]i in X-irradiated thymocytes was not changed as compared with the control, while the GSH content was increased. The gradual increase in [Ca2+]i along with GSH level falling was detected in the H2O2-treated cells. 45Ca2+ entry in the cells exposed to apoptogenic stimuli was not enhanced. After addition of H2O2 to the cells previously treated with thapsigargin further [Ca2+]i increase in both normal and nominally calcium-free medium was detected. Cyclosporine A inhibited Ca2+-mobilizing effect of H2O2, but did not prevent it completely. The role of intracellular calcium depots in calcium homeostasis disturbance during oxidative stress and apoptosis is discussed.  相似文献   

16.
Oxidative inactivation of protein tyrosine phosphatases and calcineurin is a well established mechanism; however, little information with regard to the effect of oxidants on PP1 and PP2A activity is available. Herein, we show that PP1 activity is inhibited by H(2)O(2) treatment in differentiated PC12 cells both in vitro and in vivo experiments. Thiol-antioxidant N-acetyl-cysteine (NAC) and reduced glutathione (GSH), when added in vitro to lysates from H(2)O(2)-treated cells, reversed PP1 inhibition. H(2)O(2) treatment increased eIF2 alpha phosphorylated levels (eIF2 alpha P) in a time- and dose-dependent fashion and promoted protein synthesis inhibition. Interestingly, NAC pretreatment protected cells from H(2)O(2)-induced PP1 inactivation and, consequently, it abolished increased H(2)O(2)-induced eIF2 alpha phosphorylation and protein synthesis inhibition. In addition, PP1 inhibitor tautomycin prevented both NAC-induced PP1 reactivation and eIF2 alpha P dephosphorylation in H(2)O(2)-treated cells. Taken together, our findings support a role for PP1 in eIF2 alpha phosphorylation and oxidative stress-triggered translation down regulation.  相似文献   

17.
H-35 rat hepatoma cells were labelled with [32P]orthophosphate and their insulin receptors isolated on wheat germ agglutinin (WGA)-agarose and anti-(insulin receptor) serum. The incubation of these cells with 10 mM-H2O2 for 10 min increased the phosphorylation of both the serine and tyrosine residues of the beta subunit of the insulin receptor. Next, insulin receptors were purified on WGA-agarose from control and H2O2-treated H-35 cells and the purified fractions incubated with [gamma-32P]ATP and Mn2+. Phosphorylation of the beta subunit of insulin receptors obtained from H2O2-treated cells was 150% of that of control cells. The kinase activity of the WGA-purified receptor preparation obtained from H2O2-treated cells, as measured by phosphorylation of src-related synthetic peptide, was increased about 4-fold over control cells. These data suggest that in intact cell systems, H2O2 may increase the insulin receptor kinase activity by inducing phosphorylation of the beta subunit of insulin receptor.  相似文献   

18.
The reaction of partially purified human O6-alkylguanine-DNA alkyltransferase with 1,3-bis(2-chloroethyl)-1-nitrosourea-treated DNA resulted in formation of a DNA-protein covalent complex. Complex formation required active alkyltransferase and brief treatment of DNA with the drug. DNA lost its capacity to form the complex once drug-induced DNA interstrand cross-links were completely formed. These results are consistent with a model in which the transferase catalyzes cleavage at O6-guanine and transfer of the alkyl moiety in a putative O6, N1-ethanoguanine intermediate of cross-link formation. DNA-protein complex formation presumably results when the transferase accepts the N1-ethanoguanine-DNA structure, analogous to its acceptance of simple alkyl groups.  相似文献   

19.
Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells   总被引:3,自引:0,他引:3  
The present investigation was undertaken to determine the types and extent of DNA damage resulting from incubation of primary cultures of bovine lens epithelial cells with hydrogen peroxide. Significant numbers of DNA single-strand breaks were detected by alkaline elution after exposure to as little as 25 microM H2O2 for 5 min at 37 degrees C. The extent of single-strand breakage was concentration dependent and linear from 25 to 200 microM H2O2. The observed single-strand breaks appear primarily due to the action of the hydroxyl radical via a Fenton reaction as both an iron chelator, 1,10-phenanthroline and OH. scavengers, including DMSO, KI and glycerol, significantly inhibited the DNA-damaging effect of H2O2. Diethyldithiocarbamate, an inhibitor of superoxide dismutase, further potentiated the DNA-damaging effects of H2O2, presumably by increasing the steady-state concentration of Fe2+. DNA-protein cross-linking was not observed. In addition, significant levels of 5,6-saturated thymine residues or pyrimidine dimers were not detected after modification of the alkaline elution methodology to allow the use of either E. coli endonuclease III or bacteriophage T4 endonuclease V, respectively. No double-strand breaks were detected after incubation of epithelial cell cultures with H2O2 concentrations of up to 400 microM for 10 min and subsequent neutral filter elution. Since, in vivo, the lens epithelium contains populations of both quiescent and dividing cells, the degree of susceptibility to oxidative damage was also studied in actively growing and plateau-phase cultures. Reduced levels of single-strand breakage were observed when plateau-phase cultures were compared to actively growing cells. In contrast, essentially no differences in repair rates were noted at equitoxic doses of H2O2. The above results suggest that lens epithelial cells may be particularly sensitive to oxidative damage and thus are a good model system in which to study the effects of oxidative stress.  相似文献   

20.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid membrane of chloroplasts play a central role in scavenging reactive oxygen species generated by photosystems. These enzymes are inactivated within minutes by H2O2 when the reducing substrate, ascorbate, is depleted. We found that, when the enzyme is inactivated by H2O2, a heme at the catalytic site of a stromal APX isoform is irreversibly cross-linked to a tryptophan residue facing the distal cavity. Mutation of this tryptophan to phenylalanine abolished the cross-linking and increased the half-time for inactivation from <10 to 62 s. In contrast with H2O2-tolerant peroxidases, rapid formation of the cross-link in APXs suggests that a radical in the reaction intermediate tends to be located in the distal tryptophan so that heme is easily cross-linked to it. This is the first report of a mutation that improves the tolerance of chloroplast APXs to H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号