首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BACKGROUND: Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS: High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS: In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS: These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.  相似文献   

4.
While the role of the mutated Huntington's disease (HD) protein in the pathogenesis of HD has been the focus of intensive investigation, the normal protein has received less attention. Nonetheless, the wild-type HD protein appears to be essential for embryogenesis, since deletion of the HD gene in mice results in early embryonic lethality. This early lethality is due to a critical role the HD protein, called huntingtin (Htt), plays in extraembryonic membrane function, presumably in vesicular transport of nutrients. Studies of mutant mice expressing low levels of Htt and of chimeric mice generated by blastocyst injection of Hdh-/- embryonic stem cells show that wildtype Htt plays an important role later in development as well, specifically in forebrain formation. Moreover, various lines of study suggest that normal Htt is also critical for survival of neurons in the adult forebrain. The observation that Htt plays its key developmental and survival roles in those brain areas most affected in HD raises the possibility that a subtle loss of function on the part of the mutant protein or a sequestering of wild-type Htt by mutant Htt may contribute to HD pathogenesis. Regardless of whether this is so, the prosurvival role of Htt suggests that HD therapies that block production of both wild-type and mutant Htt may themselves be harmful.  相似文献   

5.
6.
Perturbation of histone acetyl-transferase (HAT) activity is implicated in the pathology of polyglutamine diseases, and suppression of the counteracting histone deacetylase (HDAC) proteins has been proposed as a therapeutic candidate for these intractable disorders. Meanwhile, it is not known whether mutant polyglutamine disease protein affects the HDAC activity in declining neurons, though the answer is essential for application of anti-HDAC drugs for polyglutamine diseases. Here, we show the effect of mutant huntingtin (htt) protein on the expression and activity of HDAC proteins in rat primary cortical neurons as well as in human Huntington's disease (HD) brains. Our findings indicate that expression and activity of HDAC proteins are not repressed by mutant htt protein. Furthermore, expression of normal and mutant htt protein slightly increased HDAC activity although the effects of normal and mutant htt were not remarkably different. In human HD cerebral cortex, HDAC5 immunoreactivity was increased in the nucleus of striatal and cortical neurons, suggesting accelerated nuclear import of this class II HDAC. Meanwhile, western blot and immunohistochemical analyses showed no remarkable change in the expression of class I HDAC proteins such as HDAC1 and HDCA8. Collectively, retained activity in affected neurons supports application of anti-HDAC drugs to the therapy of HD.  相似文献   

7.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.  相似文献   

8.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in the huntingtin (Htt) gene. Despite years of research, there is no treatment that extends life for patients with the disorder. Similarly, little is known about which cellular pathways that are altered by pathogenic Huntingtin (Htt) protein expression are correlated with neuronal loss. As part of a longstanding effort to gain insights into HD pathology, we have been studying the protein in the context of the fruitfly Drosophila melanogaster. We generated transgenic HD models in Drosophila by engineering flies that carry a 12-exon fragment of the human Htt gene with or without the toxic trinucleotide repeat expansion. We also created variants with a monomeric red fluorescent protein (mRFP) tag fused to Htt that allows in vivo imaging of Htt protein localization and aggregation. While wild-type Htt remains diffuse throughout the cytoplasm of cells, pathogenic Htt forms insoluble aggregates that accumulate in neuronal soma and axons. Aggregates can physically block transport of numerous organelles along the axon. We have also observed that aggregates are formed quickly, within just a few hours of mutant Htt expression. To explore mechanisms of neurodegeneration in our HD model, we performed in vivo and in vitro screens to search for modifiers of viability and pathogenic Htt aggregation. Our results identified several novel candidates for HD therapeutics that can now be tested in mammalian models of HD. Furthermore, these experiments have highlighted the complex relationship between aggregates and toxicity that exists in HD.  相似文献   

9.
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.  相似文献   

10.
Huntington's disease (HD) is a genetically dominant neurodegenerative condition caused by an unique mutation in the disease gene huntingtin. Although the Huntington protein (Htt) is ubiquitously expressed, expansion of the polyglutamine tract in Htt leads to the progressive loss of specific neuronal subpopulations in HD brains. In this article, we will summarize the current understanding on mechanisms of how mutant Htt can elicit cytotoxicity, as well as how the selective sets of neuronal cell death occur in HD brains.  相似文献   

11.
Aging likely plays a role in neurodegenerative disorders. In Huntington''s disease (HD), a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt), the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or “normal” aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a β-Galactosidase (β-Gal) reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week) and old (15 month) rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that “normal” aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.  相似文献   

12.
Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the huntingtin (htt) protein. To uncover candidate therapeutic targets and networks involved in pathogenesis, we integrated gene expression profiling and functional genetic screening to identify genes critical for mutant htt toxicity in yeast. Using mRNA profiling, we have identified genes differentially expressed in wild-type yeast in response to mutant htt toxicity as well as in three toxicity suppressor strains: bna4Δ, mbf1Δ, and ume1Δ. BNA4 encodes the yeast homolog of kynurenine 3-monooxygenase, a promising drug target for HD. Intriguingly, despite playing diverse cellular roles, these three suppressors share common differentially expressed genes involved in stress response, translation elongation, and mitochondrial transport. We then systematically tested the ability of the differentially expressed genes to suppress mutant htt toxicity when overexpressed and have thereby identified 12 novel suppressors, including genes that play a role in stress response, Golgi to endosome transport, and rRNA processing. Integrating the mRNA profiling data and the genetic screening data, we have generated a robust network that shows enrichment in genes involved in rRNA processing and ribosome biogenesis. Strikingly, these observations implicate dysfunction of translation in the pathology of HD. Recent work has shown that regulation of translation is critical for life span extension in Drosophila and that manipulation of this process is protective in Parkinson disease models. In total, these observations suggest that pharmacological manipulation of translation may have therapeutic value in HD.  相似文献   

13.
14.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.  相似文献   

15.
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.  相似文献   

16.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by expansion of polyglutamine at the N-terminus of the huntingtin protein. Striatal medium spiny neurons (MSN) are the primary targets of HD pathology. In our study, a cellular model of HD was based on the human neuroblastoma cells SK-N-SH transfected with plasmid for expression of the mutant huntingtin protein Htt138Q. Expression of Htt138Q increased store-dependent calcium entry into SK-N-SH cells. EVP4593 reversibly blocked the abnormal store-dependent response, probably generated by the channels incorporating TRPC1 ( transient receptor potential canonical 1) subunit.  相似文献   

17.
18.
Huntingtin (Htt) is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington’s disease (HD) is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ) expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q) and mutant (46Q and 128Q) Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on “gutless” adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs) were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.  相似文献   

19.
Huntington disease (HD) is caused by expansion of a polyglutamine (polyQ) domain in the protein known as huntingtin (htt), and the disease is characterized by selective neurodegeneration. Expansion of the polyQ domain is not exclusive to HD, but occurs in eight other inherited neurodegenerative disorders that show distinct neuropathology. Yet in spite of the clear genetic defects and associated neurodegeneration seen with all the polyQ diseases, their pathogenesis remains elusive. The present review focuses on HD, outlining the effects of mutant htt in the nucleus and neuronal processes as well as the role of cell-cell interactions in HD pathology. The widespread expression and localization of mutant htt and its interactions with a variety of proteins suggest that mutant htt engages multiple pathogenic pathways. Understanding these pathways will help us to elucidate the pathogenesis of HD and to target therapies effectively.  相似文献   

20.
Huntington disease (HD) is a fatal progressive neurodegenerative disorder associated with expansion of a CAG repeat in the first exon of the gene coding the protein huntingtin (htt). Although the feasibility of RNA interference (RNAi)-mediated reduction of htt expression to attenuate HD-associated symptoms is suggested, the effects of post-symptomatic RNAi treatment in the HD model mice have not yet been certified. Here we show the effects of recombinant adeno-associated virus (rAAV)-mediated delivery of RNAi into the HD model mouse striatum after the onset of disease. Neuropathological abnormalities associated with HD, such as insoluble protein accumulation and down-regulation of DARPP-32 expression, were successfully ameliorated by the RNAi transduction. Importantly, neuronal aggregates in the striatum were reduced after RNAi transduction in the animals comparing to those at the time point of RNAi transduction. These results suggest that the direct inhibition of mutant gene expression by rAVV would be promising for post-symptomatic HD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号