首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Löwe J  Amos LA 《The EMBO journal》1999,18(9):2364-2371
The 40 kDa protein FtsZ is a major septum-forming component of bacterial cell division. Early during cytokinesis at midcell, FtsZ forms a cytokinetic ring that constricts as septation progresses. FtsZ has a high propensity to polymerize in vitro into various structures, including sheets and filaments, in a GTP-dependent manner. Together with limited sequence homology, the occurrence of the tubulin signature motif in FtsZ and a similar three-dimensional structure, this leads to the conclusion that FtsZ is the bacterial tubulin homologue. We have polymerized FtsZ1 from Methanococcus jannaschii in the presence of millimolar concentrations of Ca2+ ions to produce two-dimensional crystals of plane group P2221. Most of the protein precipitates and forms filaments approximately 23.0 nm in diameter. A three-dimensional reconstruction of tilted micrographs of FtsZ sheets in negative stain between 0 and 60 degrees shows protofilaments of FtsZ running along the sheet axis. Pairs of parallel FtsZ protofilaments associate in an antiparallel fashion to form a two-dimensional sheet. The antiparallel arrangement is believed to generate flat sheets instead of the curved filaments seen in other FtsZ polymers. Together with the subunit spacing along the protofilament axis, a fitting of the FtsZ crystal structure into the reconstruction suggests a protofilamant structure very similar to that of tubulin protofilaments.  相似文献   

2.
Microtubule architecture can vary with eukaryotic species, with different cell types, and with the presence of stabilizing agents. For in vitro assembled microtubules, the average number of protofilaments is reduced by the presence of sarcodictyin A, epothilone B, and eleutherobin (similarly to taxol) but increased by taxotere. Assembly with a slowly hydrolyzable GTP analogue GMPCPP is known to give 96% 14 protofilament microtubules. We have used electron cryomicroscopy and helical reconstruction techniques to obtain three-dimensional maps of taxotere and GMPCPP microtubules incorporating data to 14 A resolution. The dimer packing within the microtubule wall is examined by docking the tubulin crystal structure into these improved microtubule maps. The docked tubulin and simulated images calculated from "atomic resolution" microtubule models show tubulin heterodimers are aligned head to tail along the protofilaments with the beta subunit capping the microtubule plus end. The relative positions of tubulin dimers in neighboring protofilaments are the same for both types of microtubule, confirming that conserved lateral interactions between tubulin subunits are responsible for the surface lattice accommodation observed for different microtubule architectures. Microtubules with unconventional protofilament numbers that exist in vivo are likely to have the same surface lattice organizations found in vitro. A curved "GDP" tubulin conformation induced by stathmin-like proteins appears to weaken lateral contacts between tubulin subunits and could block microtubule assembly or favor disassembly. We conclude that lateral contacts between tubulin subunits in neighboring protofilaments have a decisive role for microtubule stability, rigidity, and architecture.  相似文献   

3.
The supramolocular structure of hemoglobin S has been studied by electron microscopy and computer-based image reconstruction. Negatively stained fibers prepared by the lysis of sickled cells or the stirring of hemoglobin S hemolysates have been observed to be almost exclusively of the 20-nm diameter form. These fibers have a periodic variation in diameter between the extremes of 18 nm and 23 nm. Computed Fourier transforms of the fibers show a, highly complex pattern of reciprocal space maxima, with 30 maxima on 20 layer-lines clearly resolved. The Bessel orders of the maxima were assigned with the aid of a newly developed technique, a combined real-space Fourier-space reconstruction method (REFORM). This method utilizes the filtered image produced by the inverse Fourier transform of the low-resolution maxima to calculate in real space the crosssection of a helical fiber. The REFORM analysis indicated that the fibers have an elliptical cross-section and are composed of 14 hexagonally packed filaments with 10 outer filaments surrounding four inner filaments. On the basis of this cross-section, the Bessel orders of all the maxima were assigned, permitting the calculation of three-dimensional reconstructions by Fourier Bessel synthesis. From these reconstructions details of the location of hemoglobin S molecules of each filament were obtained. Hemoglobin S molecules are staggered in adjacent filaments to produce a closely packed helical structure. Reconstructions of fibers at various stages of disassembly revealed a stable intermediate containing 10 filaments which could be characterized in terms of the loss of two pairs of specific outer filaments. A partially disassembled fiber with only six filaments at positions corresponding to three inner and three outer filaments of the parent structure was also identified. The six-filament structure appears to be produced from the 10-filament structure by the loss of two specific pairs of filaments. Thus pairs of filaments are evidently significant structural units in the stabilization of the complete fibers and the orientation of the molecules in these pairs may be related to the filament pairs known to occur in crystals of hemoglobin S.  相似文献   

4.
The transforms of a large number of models of deoxygenated sickle hemoglobin fibers, related to that derived from image reconstruction of electron micrographs, have been calculated and compared with X-ray diffraction data of 15 A resolution. The model of the fiber, determined from the reconstructed image, is a helix consisting of 14 filaments that associate in a specific mode to form seven pairs, or protofilaments. Pairs were identified through the pattern of filament loss in partially disassembled fibers and by the separation between molecules, in adjacent filaments, of half a molecular diameter, along the fiber axis. An alternative mode of filament association can be derived also from the surface lattice of the reconstruction, which meets these criteria for the pairing of molecular filaments. Both pairing modes have been used in the search for structures whose transforms show the best agreement with the diffraction data. Models were generated by the systematic translation of six protofilaments, taken in symmetry related pairs, in steps of 3.5 A along the fiber axis relative to a fixed central protofilament. Each translation of a protofilament corresponds to a different fiber model, whose transform was compared with observed data. In all, over 11,000 transforms were calculated. Of all the models considered, three have been found whose residuals are minimal. At 30 A resolution, similar to that of electron micrographs, the model derived from image reconstruction and the three found through our search procedure are indistinguishable. At 15 A, however, the transforms of these models show better agreement with the observed data than the transform of the reconstructed image. Comparison of residuals shows that the model derived from the reconstructed image can be rejected with 99.5% probability relative to the model, with the same pairing scheme, found by our search procedures. The two other models, derived from the alternative pairing scheme, are also more credible than the reconstructed image, but at a lower confidence level. Each of our three models is equally acceptable. Their existence may reflect structural polymorphism of the fiber.  相似文献   

5.
We have studied the assembly and GTPase of purified FtsZ from the hyperthermophilic archaeon Methanococcus jannaschii, a structural homolog of eukaryotic tubulin, employing wild-type FtsZ, FtsZ-His6 (histidine-tagged FtsZ), and the new mutants FtsZ-W319Y and FtsZ-W319Y-His6, with light scattering, nucleotide analyses, electron microscopy, and image processing methods. This has revealed novel properties of FtsZ. The GTPase of archaeal FtsZ polymers is suppressed in Na+-containing buffer, generating stabilized structures that require GDP addition for disassembly. FtsZ assembly is polymorphic. Archaeal FtsZ(wt) assembles into associated and isolated filaments made of two parallel protofilaments with a 43 A longitudinal spacing between monomers, and this structure is also observed in bacterial FtsZ from Escherichia coli. The His6 extension facilitates the artificial formation of helical tubes and sheets. FtsZ-W319Y-His6 is an inactivated GTPase whose assembly remains regulated by GTP and Mg2+. It forms two-dimensional crystals made of symmetrical pairs of tubulin-like protofilaments, which associate in an antiparallel array (similarly to the known Ca2+-induced sheets of FtsZ-His6). In contrast to the lateral interactions of microtubule protofilaments, we propose that the primary assembly product of FtsZ is the double-stranded filament, one or several of which might form the dynamic Z ring during prokaryotic cell division.  相似文献   

6.
The three-dimensional structure of porcine brain tubulin in planar sheets formed in the presence of zinc has been determined to a resolution of approximately 20 Å by electron microscopy and image reconstruction on negatively stained samples. The samples were prepared with a mica floatation technique, which yields tubulin sheets with 36 reciprocal space maxima on lattice lines at 21, 28, 42 and 84 Å?1 in Fourier transforms of digitized images. In order to obtain three-dimensional data, sheets were tilted with the goniometer stage of the electron microscope to provide images at various angles between 0 ° and ± 60 °. Transforms of 33 tilted images plus the transform of untilted sheets based on an average of nine untilted images were combined to give the third dimension of reciprocal space (z1). These data, were expressed in terms of the phases and amplitudes along the z1 lattice line for each of the 36 maxima observed in untilted samples, as well as five additional lattice lines which have zero-amplitudes in the non-tilted central section of the three-dimensional transform. Home of these zero-amplitudes arise from systematic absences which are due to a 2-fold screw axis relating adjacent protofilaments of tubulin in the zinc-induced sheets. Thus in the three-dimensional reconstructions of the sheets a polarity of the protofilaments is apparent, with adjacent protofilaments aligned in opposite directions to give an antiparallel pattern, in contrast to normal microtubules composed of protofilaments in parallel alignment. Two classes of morphological units, each with a mass corresponding to a molecular weight of about 55,000, are found to alternate along the protofilaments. These distinct morphological units are identified as the α and β subunits of tubulin, confirming the representation of tubulin as an αβ heterodimer. Furthermore, the extensive internal contact between subunits within a dimer can readily be distinguished from the less extensive contact between dimer units. Such differences in contacts were not apparent in the earlier two-dimensional reconstructions. In addition, areas of excluded stain joining one class of subunits to the subunits of the other class in adjacent protofilaments have been resolved for tubulin polymerized in zinc-induced sheets. Of the two classes of subunits one is distinguished by a prominent cleft. Identification of which class of subunits is α and which is β is not yet possible.  相似文献   

7.
Several lines of evidence indicate a close correspondence between the linear double filaments in the crystal form of hemoglobin S grown from solutions containing polyethylene glycol and the seven pairs of helical filaments that occur in the 14-filament fibers of hemoglobin S. An analysis of the adjustments to the intermolecular contacts required to convert the double filaments from crystals to fibers is presented here. In addition, postulated contacts between the helical double filaments, which are distinct from any of the contacts of the crystals, are specified for the first time. The movements from crystals to fibers are described in terms of three rotation angles: α, the inclination of the filaments with respect to the fiber axis; δ, the tilt of successive molecules along the filaments; and ω, the rotation of successive molecules along the filaments. On the basis of the fiber structure determined by three-dimensional reconstruction of electron micrographs and the assignment of filament pairs from data on incomplete fibers, the various angles have been evaluated. For the filaments at various radii in the fibers, a varies from 3 ° to 12 °, δ varies from 1 ° to 4 ° and ω is constant at 9 °. The effects of the rotations on the contacts between molecules of hemoglobin S at various positions in the fibers are characterized using surface maps based on polar coordinates. For each residue on the surface of hemoglobin the centroid position of its side-chain is located by a longitude, a latitude and an altitude. Locations on the maps are assigned for the contacts within the helical double filaments, as well as 11 classes of new contacts describing the potential interaction sites between double filaments. The resulting maps (1) deduce roles for the various α mutants of hemoglobin known to influence fiber formation that have been identified by the Benesches; (2) distinguish effects for the α chain mutants on the same (cis) or opposite (trans) α1β1 dimer as the β6 Val in asymmetric tetramers; (3) propose new sites where effects of mutations on fiber formation may be found; and (4) suggest why some mutants may inhibit, while others enhance, fiber formation. Concerning the last point, the possibility of certain mutants “correcting” the effects of other mutants is proposed as a test of contact assignments.  相似文献   

8.
B(alpha beta) tubulin was obtained from a homogeneous class of microtubules, the incomplete B subfiber of sea urchin sperm flagellar doublet microtubules, by thermal fractionation. The thermally derived soluble B tubulin fraction (100, 000 g-h) repolymerizes in vitro, yielding microtubule-like structures. The microtubule-associated protein (MAP) composition and certain assembly parameters of thermally derived B tubulin are different from those reported for sonication- derived flageller tubulin and purified vertebrate tubulin. The "microtubules" reassembled from thermally prepared B tubulin are composed of 12-15 protofilaments (73% possess 14 protofilaments). A certain number possess a single "adlumenal component" applied to their inside walls, regardless of the number of protofilaments. Following the first cycle of polymerization, 81% of the B tubulin and essentially 100% of the MAPs remain cold insoluble. Evidence suggests that B tubulin assembles faithfully into a B lattice, creating a j seam between two protofilaments that are laterally bonded in a A-lattice configuration. The significance of these seams is discussed in relation to the mechanism of microtubule assembly, the stability of observed ribbons of protofilaments, and the three-dimensional organization of microtubule-associated components.  相似文献   

9.
An extensive structural analysis of microtubules assembled in vitro has been carried out using electron microscopy in conjunction with computer analysis based on Fourier transforms and helical diffraction theory. Microtubules assembled in vitro displayed a range of numbers of protofilaments from 12 to 16, with 14 the most abundant (84% in one large sampling). In almost all structures observed protofilaments are staggered to form a characteristic 3-start shallow helix. The presence of the 3-start helix was confirmed by fiber tilting experiments to correct the effects of microtubule flattening. Since α and β tubulin subunits alternate along the protofilaments, continuous helical lattices can be constructed with interactions between adjacent protofilaments involving unlike subunits (type A lattice) or like subunits (type B lattice). However, the 14-protofilament, 3-start microtubules are incompatible with either the A or B-type continuous helical lattice. Evidence is presented which indicates that lattice discontinuities are present which generate features of both the A and B-types, with the latter predominating.  相似文献   

10.
A close correspondence has been demonstrated between double filaments of deoxygenated hemoglobin S molecules as found in monoclinic crystals, forms I and II, and in sickle fibers. We have carried out a low resolution study of monoclinic form II by X-ray diffraction analysis. Its structure differs from that of form I solely by a shift along the a-axis of the molecular centers of the asymmetric unit, which forms the double filament. The magnitude of the translation was determined from a minimum residual calculation. The x co-ordinates of the symmetry related molecular centers of antipolar double filaments are approximately the same. This means that the double filaments are nearly in register. A minor component associated with form II crystals proved to be form I. The possible existence of additional forms is discussed.The significance of the molecular arrangement in form II is related to its presence in sickle fibers. We have determined the contacts between antipolar double filaments in this form as well as a number in form I not tabulated previously. These new contacts represent additional stabilizing interactions that might provide targets for the design of stereospecific antisickling agents.  相似文献   

11.
There is considerable diversity of opinion in the literature concerning the organization of two-chain coiled-coil molecules in intermediate filaments. I have reexplored this issue using the limited proteolysis paradigm with native mouse epidermal keratin intermediate filaments (KIF), consisting of keratins 1 and 10. KIF were harvested as cytoskeletal pellets, dissociated into subfilamentous forms at pH 9.8, 9.0, or 2.6, and were subjected to limited proteolytic digestion to recover alpha-helix-enriched particles that derived from the rod domains of the constituent chains, using conditions that do not promote reorganization of the constituent protein chains or coiled-coil molecules. The multichain particles were subjected to physicochemical analyses, amino acid sequencing, and electron microscopy in order to determine their composition, structure, and organization within the intact KIF. The results predict two principal modes of alignment: neighboring molecules may be aligned in register and antiparallel or staggered and antiparallel. From known structural constraints, this permits construction of a two-dimensional surface lattice for KIF which consists of alternating antiparallel rows of in-register and staggered molecules. These data establish the level of hierarchy at which the well-known antiparallelity and staggered features of KIF are introduced. This model supports the proposals of KIF structure based on theoretical considerations of ionic interactions scores (Crewther et al., 1983). When the KIF are dissociated at extremes of pH, this structural model allows for disruption along alternate axes; the in-register antiparallel alignment is seen only when KIF are dissociated at high pH values; below pH 9, only the staggered antiparallel alignment is seen. The process of molecule realignment especially in concentrated urea solutions indicates that the staggered antiparallel alignment is the more thermodynamically stable form in solution.  相似文献   

12.
We studied fibril formation in a family of peptides based on PHF6 (VQIVYK), a short peptide segment found in the microtubule binding region of tau protein. N-Acetylated peptides AcVYK-amide (AcVYK), AcIVYK-amide (AcPHF4), AcQIVYK-amide (AcPHF5), and AcV-QIVYK-amide (AcPHF6) rapidly formed straight filaments in the presence of 0.15 m NaCl, each composed of two laterally aligned protofilaments approximately 5 nm in width. X-ray fiber diffraction showed the omnipresent sharp 4.7-A reflection indicating that the scattering objects are likely elongated along the hydrogen-bonding direction in a cross-beta conformation, and Fourier transform IR suggested the peptide chains were in a parallel (AcVYK, AcPHF6) or antiparallel (AcPHF4, AcPHF5) beta-sheet configuration. The dipeptide N-acetyl-YK-amide (AcYK) formed globular structures approximately 200 nm to 1 microm in diameter. The polymerization rate, as measured by thioflavin S binding, increased with the length of the peptide going from AcYK --> AcPHF6, and peptides that aggregated most rapidly displayed CD spectra consistent with beta-sheet structure. There was a 3-fold decrease in rate when Val was substituted for Ile or Gln, nearly a 10-fold decrease when Ala was substituted for Tyr, and an increase in polymerization rate when Glu was substituted for Lys. Twisted filaments, composed of four laterally aligned protofilaments (9-19 nm width, approximately 90 nm half-periodicity), were formed by mixing AcPHF6 with AcVYK. Taken together these results suggest that the core of PHF6 is localized at VYK, and the interaction between small amphiphilic segments of tau may initiate nucleation and lead to filaments displaying paired helical filament morphology.  相似文献   

13.
The three-dimensional structure of zinc-induced tubulin sheets freed of microtubule associated proteins has been determined to 20 Å resolution by electron microscopy and image reconstruction. The determination was carried out with porcine brain tubulin separated from microtubule associated proteins by phosphocellulose chromatography. Negatively stained samples were tilted using the goniometer stage of the electron microscope to provide images of the tubulin sheets ranging in tilt from ?60 ° to +60 °. The micrographs were digitized and subjected to a cross-correlation analysis to compensate for smooth curvature of the lattice in the sheets. For each angle of tilt, an average unit cell was obtained from the cross-correlation analysis and subsequently a Fourier transform was computed for inclusion in the three-dimensional Fourier data set. The transforms of 47 tilted images plus the average of five untilted sheets were combined and an inverse Fourier transform was applied to give a threedimensional reconstruction of the microtubule associated protein-free tubulin sheets. Comparison of the protofilament structure in these sheets with the previously published protofilament structure of zinc-induced tubulin sheets containing microtubule associated proteins reveals a number of consequences of the removal of microtubule associated proteins. (1) The extensive internal contact along the protofilament observed in microtubule associated protein-containing tubulin sheets is maintained in microtubule associated protein-free tubulin sheets. (2) In projection, the protofilaments in microtubule associated protein-free tubulin sheets are 2.2 Å closer together than in microtubule associated protein-tubulin sheets. (3) The deviations of adjacent protofilaments from the plane of the sheets when viewed end-on are more pronounced in the absence of microtubule associated proteins. Differences are also observed at the level of individual tubulin subunits. In particular, the distinct cleft which was found in one class of subunits in tubulin sheets with microtubule associated proteins is absent in the microtubule associated protein-free tubulin sheets. The loss of this cleft and some changes in the shape of the tubulin subunits upon removal of microtubule associated proteins suggest a possible site for the interaction of tubulin with microtubule associated proteins.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1517-1533
Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2- terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.  相似文献   

15.
The calculated transforms of a number of crystal-based models of the deoxygenated sickle cell hemoglobin fiber have been compared with X-ray diffraction data of 15 A (1 A = 0.1 nm) resolution. The fiber models consist of 14 single strands of sickle cell hemoglobin (HbS) molecules, which associate into seven protofilaments arranged similarly to those present in the crystal structure. Six of the protofilaments are arranged in three crystallographic until cells extending in the c-axis direction with the seventh protofilament positioned so as to provide an elliptical cross-section when the assemblage is viewed down the fiber axis. Models were generated by systematically and independently translating each of the model's three subcells in steps of 3.5 A along the fiber axis. The seventh protofilament was kept fixed as a point of reference. Each translation of a subcell corresponded to a different fiber model whose transform was then compared with observed data. In all, over 46,000 transforms were computed; of these, three models with minimal residuals were identified. The free energy of packing for all crystal-based models was evaluated to find configurations of protofilaments possessing minimal free energies. The results of the calculations support the subcell configurations of two of the three models with minimal residuals.  相似文献   

16.
Tubulin assembles to form a range of structures that differ by their protofilament and monomer helix-start numbers. The microtubule lattice is believed to accommodate these different configurations by skewing the protofilaments so that the lateral interactions between tubulin subunits are maintained. Here, we present the characterization of 14 types of microtubules, including six novel ones, through an extensive analysis of microtubules assembled in vitro from pure tubulin. Although the six new types represented only 1 % of the total length of the population examined ( approximately 17 mm), they define the limits of microtubule structure and assembly. Protofilament skewing is restricted to within +/-2 degrees. Outside this range, the restoring force induced by the skewed protofilaments is compensated by a longitudinal shift (less than +/-0.2 nm) between adjacent protofilaments. Configurations with theoretical protofilament skew angles larger than +/-4 degrees or that necessitate larger modifications of the microtubule surface lattice were not observed. Analysis of the microtubule types distribution reveals that it is sharply peaked around the less skewed conformations. These results indicate that both the flexibility of the protofilaments and the strength of their lateral interactions restrict the range of structures assembled. They also demonstrate that growing microtubules can occasionally switch into energetically unfavorable configurations, a behavior that may account for the stochastic nature of catastrophes.  相似文献   

17.
The structure of the major protein of the pellicular membrane of Leishmania tropica was investigated. This protein is composed of two polypeptides, of ca. 50,000 d molecular weight, that were found to cross-react immunologically with the α and β subunits of pig brain tubulin. The polypeptides and pig brain tubulin subunits were partially digested with S. aureus V8 protease, and the peptides obtained analysed by SDS-polyacrylamide gel electrophoresis. A comparison of the patterns showed that the β subunits of Leishmania and pig tubulin have very similar primary structures, while the α subunits have evolved divergently. These experiments demonstrate that the major polypeptides found in the pellicular membrane of L. tropica are α and β subunits of tubulin. Immuno-electron microscopy indicates that the tubulin is located in the microtubules associated with the pellicular membrane of Leishmania. Arrays of microtubules were prepared by nonionic detergent treatment of the cells and observed by electron microscopy after negative staining. Optical diffraction reveals a 5 nm spacing between protofilaments in the microtubule and a 4 nm axial periodicity corresponding to the tubulin subunits. The pitch of the shallow left-hand three-start helix is 12°. A distance of 47 nm separates each microtubule from the next. These data show that the dimensions and supramolecular organization of the tubulin subunits in the microtubules are identical in the pellicular membrane of L. tropica and in mammalian brain.  相似文献   

18.
Oblique alignment of hemoglobin S fibers in sickled cells   总被引:3,自引:0,他引:3  
Thin sections of embedded, sickled erythrocytes reveal oblique alignment of parallel sheets of single fibers of hemoglobin S, with adjacent layers rotated by about 26 °. The oblique alignment pattern is consistent with the interlocking of helical grooves present in the 14-filament structure determined for individual fibers and could be related to the curvature in cell shape characteristic of the sickling process.  相似文献   

19.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

20.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号