首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
This study evaluates mtDNA transmission in Agaricus bisporus, as well as the occurrence of non-parental haplotypes in heterokaryons produced by controlled crosses. Sixteen crosses were performed with blended liquid cultures, using different combinations of 13 homokaryotic strains. For each cross, different mtDNA haplotypes were present in each homokaryon. Heterokaryons generated from these crosses were subject to genetic analysis with RFLP markers to identify (i). karyotic status, (ii). mtDNA haplotype, and (iii). the occurrence of non-parental mtDNA haplotypes. These analyses generally supported the occurrence of uniparental mitochondrial (mt) inheritance in A. bisporus, with one mtDNA haplotype usually favoured in the new heterokaryon. The preponderance of one mtDNA haplotype in a new heterokaryon did not necessarily show a correlation with a greater mycelial growth rate for the parent homokaryon possessing that haplotype. Mixed mtDNA haplotypes and non-parental haplotypes were also identified in the heterokaryons from some crosses. Evidence for the occurrence of two mtDNA haplotypes in one heterokaryotic mycelium was observed in 8 of 16 crosses, suggesting the maintenance of true heteroplasmons after three successive subculturing steps. Non-parental mtDNA haplotypes were seen in heterokaryons produced from 7 of 16 crosses. The mating protocol described can be utilized to generate novel mtDNA haplotypes for strain improvement and the development of strain-specific markers. Mechanisms of mt selection and inheritance are discussed.  相似文献   

2.
Mitochondrial DNA (mtDNA) haplotypes usually are assumed to be neutral, unselected markers of evolving female lineages. This assumption was tested by monitoring haplotype frequencies in 12 experimental populations of Drosophila pseudoobscura which were polymorphic for mtDNA haplotypes. Populations were maintained for at least 10 generations, and in one case for 32 generations, while tests of mtDNA selective neutrality were conducted. In an initial population, formed from a mixture of two strains with different mitochondrial haplotypes, the frequency of the Bogota haplotype increased 46% in 3 generations, reaching an apparent equilibrium frequency of 82% after 32 generations. Perturbation of this equilibrium by addition of the less common haplotype resulted in a rapid, dramatic increase in frequency of the second haplotype, and a return to essentially the same equilibrium frequency as before perturbation. This behavior is not consistent with mtDNA neutrality, nor is the equilibrium consistent with a simple model of constant selection on the haploid mtDNAs. Replicate cage experiments with mtDNA haplotypes did not always generate the same result as the initial cage. Several lines of evidence, including manipulations of the nuclear genome, support the idea that both nuclear and mitochondrial genomes are involved in the dramatic mtDNA frequency changes. In another experiment, strong female viability selection was implicated via mtDNA frequency changes. Although the causes of the dramatic mtDNA frequency changes in our populations are not obvious, it is clear that Drosophila mitochondrial haplotypes are not always simply neutral markers. Our findings are relevant to the introduction of a novel mtDNA variant from one species or one population into another. Such introductions could be strongly favored by selection, even if it is sporadic.  相似文献   

3.
S. T. Kilpatrick  D. M. Rand 《Genetics》1995,141(3):1113-1124
Tests were performed of the selective neutrality of mitochondrial DNA (mtDNA) variants from geographic populations of Drosophila melanogaster in Argentina (ARG) and Central Africa (CAF). The two populations were completely reproductively compatible. The two distinct mtDNA haplotypes from the two populations were competed in replicate experimental populations on three nuclear genetic backgrounds: homozygous ARG, homozygous CAF, or hybrid ARG/CAF. Mitochondrial haplotype frequencies did not change significantly on either of the two homozygous nuclear backgrounds, and there was no change after experimental perturbation of haplotype frequencies. On the hybrid background, the ARG haplotype frequency increased significantly for the first two generations in all replicate populations but then did not change in subsequent generations. After perturbation, the ARG haplotype frequency increased in only one of four replicates. There is no evidence for selective differences among mtDNA variants in homozygous nuclear contexts or for nuclear-mitochondrial coadaptation. While some ``fitness' difference among mtDNA variants is required to account for the observed frequency shifts, it appears that in these hybrid populations, mtDNA is hitchhiking on fitness variation among hybrid segregating nuclear genes. These results have implications for the use of mtDNA in the study of hybrid zones and gene flow.  相似文献   

4.
Rand DM  Fry A  Sheldahl L 《Genetics》2006,172(1):329-341
Under the mitochondrial theory of aging, physiological decline with age results from the accumulated cellular damage produced by reactive oxygen species generated during electron transport in the mitochondrion. A large body of literature has documented age-specific declines in mitochondrial function that are consistent with this theory, but relatively few studies have been able to distinguish cause from consequence in the association between mitochondrial function and aging. Since mitochondrial function is jointly encoded by mitochondrial (mtDNA) and nuclear genes, the mitochondrial genetics of aging should be controlled by variation in (1) mtDNA, (2) nuclear genes, or (3) nuclear-mtDNA interactions. The goal of this study was to assess the relative contributions of these factors in causing variation in Drosophila longevity. We compared strains of flies carrying mtDNAs with varying levels of divergence: two strains from Zimbabwe (<20 bp substitutions between mtDNAs), strains from Crete and the United States (approximately 20-40 bp substitutions between mtDNAs), and introgression strains of Drosophila melanogaster carrying mtDNA from Drosophila simulans in a D. melanogaster Oregon-R chromosomal background (>500 silent and 80 amino acid substitutions between these mtDNAs). Longevity was studied in reciprocal cross genotypes between pairs of these strains to test for cytoplasmic (mtDNA) factors affecting aging. The intrapopulation crosses between Zimbabwe strains show no difference in longevity between mtDNAs; the interpopulation crosses between Crete and the United States show subtle but significant differences in longevity; and the interspecific introgression lines showed very significant differences between mtDNAs. However, the genotypes carrying the D. simulans mtDNA were not consistently short-lived, as might be predicted from the disruption of nuclear-mitochondrial coadaptation. Rather, the interspecific mtDNA strains showed a wide range of variation that flanked the longevities seen between intraspecific mtDNAs, resulting in very significant nuclear x mtDNA epistatic interaction effects. These results suggest that even "defective" mtDNA haplotypes could extend longevity in different nuclear allelic backgrounds, which could account for the variable effects attributable to mtDNA haplogroups in human aging.  相似文献   

5.
We investigated the patterns of mitochondrial DNA variation in the global population of the commercial mushroom Agaricus bisporus . Through the analysis of RFLP's among 441 isolates from nine countries in North America and Eurasia, we found a total of 140 mtDNA haplotypes. Based on population genetic analysis, there are four genetically distinct natural populations in this species, found in coastal California, desert California, France and Alberta (Canada). While 134 of the 140 mtDNA haplotypes were unique to single geographical regions, two mtDNA haplotypes, mt001 and mt002, were found in almost every population surveyed. These two mtDNA haplotypes also predominate among cultivars used throughout the world for at least the last two decades. These two mtDNA haplotypes are more similar to the cosmopolitan groups of mtDNA haplotypes than to the indigeneous clusters of mtDNA haplotypes from the two Californian regions.  相似文献   

6.
We tested different fitness components on a series of conspecific mtDNA haplotypes, detected by RFLPs in Drosophila subobscura. Additionally, haplotype VIII, endemic to the Canary Islands, was tested upon its own native nuclear DNA background and upon that of the rest of mtDNAs tested herein. We found that both nuclear and mitochondrial DNA can have a significant effect upon their hosts' fitness, and that negative selection is one of the mechanisms that can intervene in this species' mtDNA haplotype pattern. We discuss the importance of this mechanism in relation to genetic drift, in the form of periodic population bottlenecks, and how the latter can enhance the former. We also detected a significant positive effect of haplotype VIII upon fitness that could explain in part the dominance of this endemic haplotype on some of the Canary Islands, and a mitochondrial heterosis involving this haplotype when on a foreign nuclear DNA background.  相似文献   

7.
R S Khush  E Becker    M Wach 《Applied microbiology》1992,58(9):2971-2977
Single 10-bp primers were used to generate random amplified polymorphic DNA (RAPD) markers from commercial and wild strains of the cultivated mushroom Agaricus bisporus via the polymerase chain reaction. Of 20 primers tested, 19 amplified A. bisporus DNA, each producing 5 to 15 scorable markers ranging from 0.5 to 3.0 kbp. RAPD markers identified seven distinct genotypes among eight heterokaryotic strains; two of the commercial strains were shown to be related to each other through single-spore descent. Homokaryons recovered from protoplast regenerants of heterokaryotic strains carried a subset of the RAPD markers found in the heterokaryon, and both of the haploid nuclei from two heterokaryons were distinguishable. RAPD markers also served to verify the creation of a hybrid heterokaryon and to analyze meiotic progeny from this new strain: most of the basidiospores displayed RAPD fingerprints identical to that of the parental heterokaryon, although a few selected slow growers were homoallelic at a number of loci that were heteroallelic in the parent, suggesting that they represented rare homokaryotic basidiospores; crossover events between a RAPD marker locus and its respective centromere appeared to be infrequent. These results demonstrate that RAPD markers provide an efficient alternative for strain fingerprinting and a versatile tool for genetic studies and manipulations of A. bisporus.  相似文献   

8.
DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus.   总被引:12,自引:0,他引:12  
Single 10-bp primers were used to generate random amplified polymorphic DNA (RAPD) markers from commercial and wild strains of the cultivated mushroom Agaricus bisporus via the polymerase chain reaction. Of 20 primers tested, 19 amplified A. bisporus DNA, each producing 5 to 15 scorable markers ranging from 0.5 to 3.0 kbp. RAPD markers identified seven distinct genotypes among eight heterokaryotic strains; two of the commercial strains were shown to be related to each other through single-spore descent. Homokaryons recovered from protoplast regenerants of heterokaryotic strains carried a subset of the RAPD markers found in the heterokaryon, and both of the haploid nuclei from two heterokaryons were distinguishable. RAPD markers also served to verify the creation of a hybrid heterokaryon and to analyze meiotic progeny from this new strain: most of the basidiospores displayed RAPD fingerprints identical to that of the parental heterokaryon, although a few selected slow growers were homoallelic at a number of loci that were heteroallelic in the parent, suggesting that they represented rare homokaryotic basidiospores; crossover events between a RAPD marker locus and its respective centromere appeared to be infrequent. These results demonstrate that RAPD markers provide an efficient alternative for strain fingerprinting and a versatile tool for genetic studies and manipulations of A. bisporus.  相似文献   

9.
Understanding the complex origin of domesticated populations is of vital importance for understanding, preserving and exploiting breed genetic diversity. Here, we aim to assess Asian contributions to European traditional breeds and western commercial chickens for mitochondrial genetic diversity. To this end, a 365‐bp fragment of the chicken mtDNA D‐loop region of 16 Dutch fancy breeds (113 individuals) was surveyed, comprising almost the entire breed diversity of The Netherlands. We also sequenced the same fragment for 160 commercial birds representing all important commercial types from multiple commercial companies that together represent more than 50% of the worldwide commercial value. We identified 20 different haplotypes. The haplotypes clustered into five clades. The commonest clade (E‐clade) supposedly originates from the Indian subcontinent. In addition, both in commercial chicken and Dutch fancy breeds, many haplotypes were found with a clear East Asian origin. However, the erratic occurrence of many different East Asian mitochondrial clades indicates that there were many independent instances where breeders used imported exotic chickens for enhancing local breeds. Nucleotide diversity and haplotype diversity analyses showed the influence of the introgression of East Asian chicken on genetic diversity. All populations that had haplotypes of multiple origin displayed high inferred diversity, as opposed to most populations that had only a single mitochondrial haplotype signature. Most fancy breeds were found to have a much lower within‐population diversity compared to broilers and layers, although this is not the case for mitochondrial estimates in fancy breeds that have multiple origin haplotypes.  相似文献   

10.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

11.
The current study compares the nucleotide variation among 22 complete mitochondrial genomes of the three distinct Drosophila simulans haplotypes with intron 1 of the alcohol dehydrogenase-related locus. This is the first study to investigate the sequence variation of multiple complete mitochondrial genomes within distinct mitochondrial haplotypes of a single species. Patterns of variation suggest distinct forces are influencing the evolution of mitochondrial DNA (mtDNA) and autosomal DNA in D. simulans. First, there is little variation within each mtDNA haplotype but strong differentiation among them. In contrast, there is no support for differentiation of the mitochondrial haplotypes at the autosomal locus. Second, there is a significant deficiency of mitochondrial variation in each haplotype relative to the autosomal locus. Third, the ratio of nonsynonymous to synonymous substitutions is not equal in all branches of the well-resolved phylogeny. There is an excess of nonsynonymous substitutions relative to synonymous substitutions within each D. simulans haplotype. This result is similar to that previously observed within the mtDNA of distinct species. A single evolutionary force may be causally linked to the observed patterns of mtDNA variation—a rickettsia-like microorganism, Wolbachia pipientis, which is known to directly influence mitochondrial evolution but have a less direct influence on autosomal loci. Received: 16 September 1999 / Accepted: 14 March 2000  相似文献   

12.
S. B. Lee  J. W. Taylor 《Genetics》1993,134(4):1063-1075
This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.  相似文献   

13.
Previous analyses of diploid nuclear genotypes have concluded that recombination has occurred in populations of the yeast Candida albicans. To address the possibilities of clonality and recombination in an effectively haploid genome, we sequenced seven regions of mitochondrial DNA (mtDNA) in 45 strains of C. albicans from human immunodeficiency virus-positive patients in Toronto, Canada, and 3 standard reference isolates of C. albicans, CA, CAI4, and WO-1. Among a total of 2,553 nucleotides in the seven regions, 62 polymorphic nucleotide sites and seven indels defined nine distinct mtDNA haplotypes among the 48 strains. Five of these haplotypes occurred in more than one strain, indicating clonal proliferation of mtDNA. Phylogenetic analysis of mtDNA haplotypes resulted in one most-parsimonious tree. Most of the nucleotide sites undergoing parallel change in this tree were clustered in blocks that corresponded to sequenced regions. Because of the existence of these blocks, the apparent homoplasy can be attributed to infrequent, past genetic exchange and recombination between individuals and cannot be attributed to parallel mutation. Among strains sharing the same mtDNA haplotypes, multilocus nuclear genotypes were more similar than expected from a random comparison of nuclear DNA genotypes, suggesting that clonal proliferation of the mitochondrial genome was accompanied by clonal proliferation of the nuclear genome.  相似文献   

14.
Drosophila simulans possesses three different mitochondrial haplotypes (siI, II and III) that are nonrandomly geographically subdivided with a 3% interhaplogroup variation. The aim of this study was to determine whether perturbation of mitochondrial metabolism and ROS management by temperature variation and mtDNA introgression would influence the development of aerobic capacity and the intensity of oxidative stress in D. simulans at different ages. Environmental temperature divergences during development had few impacts on metabolic capacities. Our data suggested strong functional conservatism of mitochondrial haplotypes between the D. simulans lines studied. This conservatism was expressed by the low divergences in either mitochondrial or ROS buffering enzyme activities, or even markers of ROS damage even after disruption of coevolved genomes. Disruption of coevolved mitochondrial and nuclear genomes through mtDNA introgression induced no clear divergence on metabolic phenotype at any state of development. Reduction of cytochrome c oxidase activity that was observed after introgression of one mitochondrial haplotype will require further investigation to delineate whether it is associated with any modification of mito-nuclear interactions.  相似文献   

15.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified using universal primers and subsequently digested with restriction enzymes to obtain the polymorphisms. Combinations of all the polymorphisms resulted in 33 cpDNA haplotypes and two mtDNA haplotypes. Strict association between the cpDNA haplotypes and the mtDNA haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The most frequent and abundant cpDNA haplotype (C20; frequency, 51 %) is always associated with the more frequent and abundant mtDNA haplotype (M1; frequency, 84 %). All but two of the cpDNA haplotypes associated with the less frequent mtDNA haplotype (M2) are private haplotypes. These private haplotypes are phylogenetically related but geographically unrelated. They form a separate cluster on the minimum-length spanning tree.  相似文献   

16.
Heteroplasmic point mutations in the human mtDNA control region.   总被引:24,自引:6,他引:18       下载免费PDF全文
As part of an investigation of the fixation mechanisms of mtDNA mutations in humans, we sequenced the first hypervariable segment of the control region in 180 twin pairs and found evidence of site heteroplasmy in 4 pairs. Significant levels of two mitochondrial haplotypes differing by a single point mutation were found in two MZ pairs, and within each pair, both members had similar levels of heteroplasmy. Two DZ pairs were found in which the predominant mitochondrial haplotype differed within the pair. We measured proportions of mitochondrial haplotypes within two twin pairs and their maternal relatives, using primer extension. In both maternal lineages, most family members were heteroplasmic, and the proportions of each genotype varied widely in different individuals. We used the changes in haplotype proportions within mother-offspring pairs to calculate the size range of potential bottlenecks in mitochondrial numbers occurring during development of the offspring. In most individuals, the most likely effective bottleneck sizes ranged from 3 to 20 segregating units, though in two individuals a small bottleneck was very unlikely and there was no upper limit on its possible size. We also used the data from this study, together with unpublished data from other populations, to estimate the frequency of site heteroplasmy in normal human populations. From this, we calculated that the rate of mutation and fixation in the first hypervariable segment of the human mtDNA control region is between 1.2 x 10(-6) and 2.7 x 10(-5) per site per generation. This range is in good agreement with published estimates calculated by other methods.  相似文献   

17.
Mitochondrial haplotype diversity in seven Portuguese populations of brown trout, Salmo trutta L., was investigated by sequencing the 5' end of the mitochondrial DNA (mtDNA) control region. Five new haplotypes were described for this species, each two to three mutational steps distant from the common north Atlantic haplotype. Significant population subdivision of mtDNA haplotypes was also apparent. Based on these results, as well as on published data describing the distribution of both mtDNA haplotypes and allozyme alleles throughout Europe, the postglacial recolonization of northern Europe was re-evaluated. It is argued that the available data do not support the contribution of two major glacial refugia (southwest Atlantic and Ponto-Caspian Basin) to this postglacial recolonization, as proposed in a recently published model. The unique genetic architecture of Portuguese brown trout within the Atlantic-basin clade of this species represents a highly valuable genetic resource that should be protected from introgression with nonendemic strains of hatchery fish.  相似文献   

18.
Gavino PD  Fry WE 《Mycologia》2002,94(5):781-793
Two extant nomenclature systems were reconciled to relate six mitochondrial DNA (mtDNA) haplotypes of Phytophthora infestans, the oomycete pathogen causing late blight disease on potato and tomato. Carter's haplotypes I-a and I-b were included in Goodwin's haplotype A, while Carter's haplotypes II-a and II-b were included in Goodwin's haplotype B. In addition, haplotypes E and F were included in Carter's haplotype I-b. The mutational differences separating the various haplotypes were determined, and we propose that either haplotype I-b(A) or haplotype I-a(A) is the putative ancestral mtDNA of P. infestans, because either can center all the other haplotypes in a logical stepwise network of mutational changes. The occurrence of the six haplotypes in 548 isolates worldwide was determined. Haplotypes I-a and II-a were associated with diverse genotypes worldwide. As previously suggested, haplotype I-b was found only in the US-1 clonal lineage and its variants (n = 99 isolates from 16 countries on 5 continents), and haplotype II-b was limited to the US-6 clonal lineage and its derivatives (n = 36). In a confirmation of a previous suggestion, the randomly mating population in the Toluca Valley of central Mexico (n = 78) was monomorphic for mtDNA haplotype I-a(A). We hypothesize that selection there may be driving the dominance of that single mtDNA haplotype.  相似文献   

19.
To assess the extent of cytoplasmic genetic variability in cloned cattle produced by nuclear transplantation procedures, we investigated 29 individuals of seven male cattle clones (sizes 2–6) from two different commercial sources. Restriction enzyme and direct sequence analysis of mitochondrial DNA (mtDNA) detected a total of 12 different haplotypes. Transmitochondrial individuals (i.e., animals which share identical nuclei but have different mitochondrial DNA) were detected in all but one of the clones, demonstrating that mtDNA variation among cloned cattle is a very common phenomenon which prevents true genetic identity. The analyses also showed that the cytoplasmic genetic status of some investigated individuals and clones is further complicated by heteroplasmy (more than one mtDNA type in an individual). The relative proportions of different mtDNA‐types in two animals with mild heteroplasmy were estimated at 2:98% and 4:96% in DNA samples derived from blood. This is in agreement with values expected from karyoplast‐cytoplast volume ratios. In contrast, the mtDNA haplotype proportions observed in six other heteroplasmic animals of two different clones ranged from 21:79% to 57:43%, reflecting a marked increase in donor blastomere mtDNA contributions. These results suggest that mtDNA type of donor embryos and recipient oocytes used in nuclear transfer cattle cloning should be controlled to obtain true clones with identical nuclear and cytoplasmic genomes. Mol. Reprod. Dev. 54:24–31, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
C. M. Hutter  D. M. Rand 《Genetics》1995,140(2):537-548
A test for coadaptation of nuclear and mitochondrial genomes was performed using the sibling species, Drosophila pseudoobscura and D. persimilis. Two lines of flies with ``disrupted' cytonuclear genotypes were constructed by repeated backcrossing of males from one species to females carrying mitochondrial DNA (mtDNA) from the other species. Each ``disrupted' strain was competed in population cages with the original stock of each species from which the recurrent males were obtained during the backcrossing. As such, the two species' mitochondrial types were competed reciprocally in the nuclear genetic environments of each species. The trajectories of mtDNA haplotypes were followed in discrete-generation population cages using a PCR-four-cutter approach. A significant increase in the frequency of D. pseudoobscura mtDNA was observed in each of four replicate cages with a D. pseudoobscura nuclear background. In the D. persimilis nuclear background, one cage actually showed an increase in frequency of D. pseudoobscura mtDNA, although together the four replicate cages show little change in frequency. These results were repeated after frequency perturbations and reinitiation of each cage. An analysis of fitness components revealed that fertility selection greatly outweighed viability selection in these cytonuclear competition experiments. The asymmetry of the fitnesses of the mtDNA haplotypes on the two genetic backgrounds is consistent in direction with the previously reported asymmetry of female fertility in backcrosses between these two species. While our experiments do not allow us to identify mtDNA as the sole source of fitness variation, at a minimum the data indicate a fitness association between nuclear fertility factors and the D. pseudoobscura mtDNA on its own genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号