首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal reconstruction.  相似文献   

2.

Purpose

To evaluate the ocular surface change and the inflammatory response in a rabbit model of short-term exposure keratopathy.

Methods

Short term exposure keratopathy by continuous eyelid opening was induced in New Zealand white rabbits for up to 4 hours. Ultrasound pachymetry was used to detect central total corneal thickness. In vivo confocal microscopy and impression cytology were performed to evaluate the morphology of ocular surface epithelium and the infiltration of inflammatory cells. Immunohistochemistry for macrophage,neutrophil, CD4(+) T cells, and CD8(+) T cells were performed to classify the inflammatory cells. Scanning electron microscopy(SEM) was performed to detect ocular surface change.The concentrations of IL-8, IL-17, Line and TNF-αwere analyzed by multiplex immunobead assay. TUNEL staining was performed to detect cellular apoptosis.

Results

Significant decrease ofcentral total cornealthickness were found within the first 5 minutes and remained stable thereafter, while there were no changes of corneal epithelial thickness.No significant change of corneal, limbal and conjunctival epithelial morphology was found by in vivo confocal microscopy except the time dependent increase of superficial cellular defects in the central cornea. Impression cytology also demonstrated time dependent increase of sloughing superficial cells of the central cornea. Aggregations ofinflammatory cells were found at 1 hour in the limbal epithelium, 2 hours in the perilimbal conjunctival epithelium, and 3 hours in the peripheral corneal epithelium.In eyes receiving exposure for 4 hours, the infiltration of the inflammatory cells can still be detected at 8 hours after closing eyes.Immunohistochemical study demonstrated the cells to be macrophages, neutrophils, CD4-T cells and CD-8 T cells.SEM demonstrated time-depending increase of intercellular border and sloughing of superficial epithelial cells in corneal surface. Time dependent increase of IL-8, IL-17 and TNF-α in tear was found.TUNEL staining revealed some apoptotic cells in the corneal epithelium and superficial stroma at 3 hours after exposure.

Conclusions

Short term exposure keratopathy can cause significant changes to the ocular surface and inflammatory response. Decrease of central total corneal thickness, aggregation of inflammatory cells, and cornea epithelial cell and superficial keratocyte apoptosis were found no less than 4 hours following the insult.  相似文献   

3.

Purpose

This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding.

Methods

Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs.

Results

The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining.

Conclusions

Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.  相似文献   

4.
Limbal stem cell deficiency contributes to recurrent corneal epithelial defects. We examined whether the conjunctival epithelium can transdifferentiate to corneal epithelium following surgically induced limbal stem cell deficiency. Mice were anesthetized by intraperitoneal injection of sodium pentobarbital. Partial or total epithelial removal was produced with a no. 69 Beaver blade under a dissecting microscope. The wounds were allowed to heal for 0–28 days, and the mice were examined every other day to evaluate re-epithelialization. Corneas were then subjected to histological, immunohistochemical studies and Western blot analysis with epitope-specific anti-keratin 12 antibodies. Partial epithelial defects re-epithelialized within 2 days and were normal in appearance and expressed cornea-specific keratin 12. In eyes with limbal deficiency, re-epithelialization progressed more slowly and was characterized by opacification; epithelial closure usually occurred by the 7th day. This epithelium differed from normal corneal epithelium in basic morphology, cell shape, and the presence of goblet cells at 2 weeks after injury. The epithelium at the center of injured corneas with total defect at 4 weeks had cornealike morphology and was devoid of goblet cells. These epithelial cells derived from conjunctiva did not express the cornea-specific keratin 12, as determined by immunohistochemistry, Western blot analysis and in situ hybridization. As evidenced by differences in morphology and the expression of cornea-specific keratin 12, conjunctival transdifferentiation does not occur in conjunctical overgrowth after the removal of limbal epithelium.  相似文献   

5.
Summary In alkali burned rabbit corneas activities of -glucuronidase, N-acetyl--D-glucosaminidase and acid -galactosidase were studied histochemically in various time intervals after the traumatization. The technic with semipermeable membranes was employed. Within four days after the injury enzyme activities in the traumatized area were almost lacking. The corresponding activities in the unaffected part of the cornea were within the norm. On the 7th day enzyme activities were on an increase (but still subnormal) in the traumatized area. This area was surrounded by a zone of keratocytes with high levels of enzyme activities. This was particularly remarkable in keratocytes subjacent to the epithelium. The activation of all enzymes studied was present in the basal layer of the epithelium and in the endothelium as well. On the 14th day enzyme activities in the traumatized area were nearly restored and on the 32nd day they could not be distinguished from the normal cornea. -galactosidase displayed a relatively maximal increase in the activity of all enzymes investigated.  相似文献   

6.
We have previously shown that the expression of a major 64-Kda keratin (K3) in corneal epithelium is site-related. It is found suprabasally in limbal epithelium, but uniformly (basal cells included) in central corneal epithelium. In the present study, we used a panel of antibodies against various components of corneal epithelial basement membrane to investigate a possible correlation between basement membrane heterogeneity and differential (basal vs. suprabasal) K3 keratin expression. One of these antibodies, AE27, stains human conjunctival basement membrane weakly, limbal basement membrane heterogeneously, and central corneal basement membrane strongly. Basal cells resting on basement membrane that stains strongly with AE27 tend to stain with monoclonal antibody AE5, which recognizes keratin K3. Basal cells on basement membrane staining weakly with AE27 tend not to stain with AE5. No such correlation exists between AE5 staining and type IV collagen, which is detectable immunohistochemically in conjunctival and limbal basement membrane, but not in corneal basement membrane overlying Bowman's layer. These results suggest that basement membrane of human corneal/conjunctival epithelium can be divided into at least three domains: the conjunctival basement membrane (type IV collagen-positive, AE27-weak), the limbal basement membrane (type IV collagen-positive, AE27-strong), and corneal basement membrane (type IV collagen-negative, AE27-strong). The results also raise the possibility that basement membrane heterogeneity may play a functional role in regulating keratin expression and other aspects of differentiation of corneal epithelium; more experiments are needed to test this hypothesis.  相似文献   

7.

Purpose

To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing.

Methods

TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays.

Results

TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing.

Conclusions

TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury.  相似文献   

8.
Interferon- (IFN),4 a cytokine with modulatory activities on many cell types, is useful for treating many types of cancer and infectious diseases. This study investigates whether modification of a protein, using IFN as an example, with a lipophilic group can alter its distribution and kinetic properties in the body. Ser163 of IFN2a was mutated to Cys to generate a free sulfhydryl group for site-specific chemical modification. IFN2a(S163C) was conjugated by iodoacetamide derivatives of varying lengths, and the modified IFN2a was purified by gel filtration chromatography. The biological activities of IFN2a(S163C) and lipophilized IFN2a(S163C) were similar to that of IFN2a, as evidenced by their inhibitory effects on the growth of Daudi cells and on the replication of vesicular stomatitis virus in Madin-Darby bovine kidney cells. Lipophilized IFN2a(S163C) bound to human serum albumin and cell membranes more readily than did IFN2a. Future experiments will investigate whether lipophilized IFN2a(S163C) has improved pharmacokinetic properties.  相似文献   

9.

Purpose

To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects.

Design

Prospective, interventional case series.

Methods

In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7.

Results

By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period.

Conclusion

Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration.

Trial Registration

JAPIC Clinical Trials Information 142705  相似文献   

10.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

11.
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.  相似文献   

12.

Purpose

Macrophages have been shown to play a critical role in the wound healing process. In the present study, the role of macrophages in wound healing after autologous corneal transplantation was investigated by depleting local infiltrated macrophages.

Methods

Autologous corneal transplantation model was used to induce wound repair in Balb/c mice. Macrophages were depleted by sub-conjunctival injections of clodronate-containing liposomes (Cl2MDP-LIP). The presence of CD11b+ F4/80+ macrophages, α-smooth muscle actin+ (α-SMA+) myofibroblasts, CD31+ vascular endothelial cells and NG2 + pericytes was examined by immunohistochemical and corneal whole-mount staining 14 days after penetrating keratoplasty. Peritoneal macrophages were isolated from Balb/c mice and transfused into conjunctiva to examine the recovery role of macrophages depletion on wound healing after autologous corneal transplantation.

Results

Sub-conjunctival Cl2MDP-LIP injection significantly depleted the corneal resident phagocytes and infiltrated macrophages into corneal stroma. Compared with the mice injected with PBS-liposome, the Cl2MDP-LIP-injected mice showed few inflammatory cells, irregularly distributed extracellular matrix, ingrowth of corneal epithelium into stroma, and even the detachment of donor cornea from recipient. Moreover, the number of macrophages, myofibroblasts, endothelial cells and pericytes was also decreased in the junction area between the donor and recipient cornea in macrophage-depleted mice. Peritoneal macrophages transfusion recovered the defect of corneal wound healing caused by macrophages depletion.

Conclusions

Macrophage depletion significantly impairs wound healing after autologous corneal transplantation through at least partially impacting on angiogenesis and wound closure.  相似文献   

13.

Purpose

To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn.

Methods

Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA) synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry.

Results

Pirfenidone prevented (P<0.05) increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05) reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn.

Conclusion

Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases.  相似文献   

14.
Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface.  相似文献   

15.

Background

Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.

Aim

To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury.

Methods

Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.

Results

Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.

Conclusions

CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.  相似文献   

16.
Limbal Stem Cells in Health and Disease   总被引:7,自引:0,他引:7  
Stem cells are present in all self-reviewing tissues and have unique properties. The ocular surface is made up of two distinct types of epithelial cells, constituting the conjunctival and the corneal epithelia. These epithelia are stratified, squamous and non-keratinized. Although anatomically continuous with each other at the corneoscleral limbus, the two cell phenotypes represent quite distinct subpopulations. The stem cells for the cornea are located at the limbus. The microenvironment of the limbus is considered to be important in maintaining stemness of the stem cells. They also act as a barrier to conjunctival epithelial cells and prevent them from migrating on to the corneal surface. In certain pathologic conditions, however, the limbal stem cells may be destroyed partially or completely resulting in varying degrees of stem cell deficiency with its characteristic clinical features. These include conjunctivalization of the cornea with vascularization, appearance of goblet cells, and an irregular and unstable epithelium. The stem cell deficiency can be managed with auto or allotransplantation of these cells. With the latter option, systemic immunosuppression is required. The stem cells can be expanded ex vivo on a processed human amniotic membrane and transplanted back to ocular surface with stem cell deficiency without the need of immunosuppression.  相似文献   

17.

Purpose

To evaluate the efficiency of corneal collagen cross-linking (CXL) in addition to topical voriconazole in cases with mycotic keratitis.

Design

Retrospective case series in a tertiary university hospital.

Participants

CXL was performed on 13 patients with mycotic keratitis who presented poor or no response to topical voriconazole treatment.

Methods

The clinical features, symptoms, treatment results and complications were recorded retrospectively. The corneal infection was graded according to the depth of infection into the stroma (from grade 1 to grade 3). The visual analogue scale was used to calculate the pain score before and 2 days after surgery.

Main Outcome Measures

Grade of the corneal infection.

Results

Mean age of 13 patients (6 female and 7 male) was 42.4 ± 17.7 years (20–74 years). Fungus was demonstrated in culture (eight patients) or cytological examination (five patients). Seven of the 13 patients (54%) were healed with topical voriconazole and CXL adjuvant treatment in 26 ± 10 days (15–40 days). The remaining six patients did not respond to CXL treatment; they initially presented with higher grade ulcers. Pre- and post-operative pain score values were 8 ± 0.8 and 3.5 ± 1, respectively (p < 0.05).

Conclusions

The current study suggests that adjunctive CXL treatment is effective in patients with small and superficial mycotic ulcers. These observations require further research by large randomized clinical trials.
  相似文献   

18.
Heterozygosity for PAX6 deficiency (PAX6+/-) results in aniridia. Corneal changes in aniridia-related keratopathy (ARK) include corneal vascular pannus formation, conjunctival invasion of the corneal surface, corneal epithelial erosions and epithelial abnormalities, which eventually result in corneal opacity and contribute to visual loss. Corneal changes in aniridia have been attributed to congenital deficiency of corneal limbal stem cells. The aim of this paper is to review the potential mechanisms that may underlie the pathogenesis of aniridia related keratopathy. Current evidence, based on clinical observations and an animal model of aniridia suggest that the proliferative potential of the corneal limbal stem cells may not primarily be impaired. The corneal changes in aniridia may be related to an abnormality within the limbal stem cell niche. The mechanisms underlying progressive corneal pathology in aniridia appear multi-factorial and include: (1) abnormal corneal healing responses secondary to anomalous extracellular matrix metabolism; (2) abnormal corneal epithelial differentiation leading to fragility of epithelial cells; (3) reduction in cell adhesion molecules in the PAX6 heterozygous state, rendering the cells susceptible to natural shearing forces; and (4) conjunctival and corneal changes leading to the presence of cells derived from conjunctiva on the corneal surface.  相似文献   

19.
20.
Corneal microsporidioses: characterization and identification.   总被引:5,自引:0,他引:5  
Two ocular infectious disorders attributed to Microsporidia have been observed. They differ in that one infection involves the corneal stroma leading to corneal ulceration and suppurative keratitis whereas the other infection involves the conjunctival and corneal epithelium. The corneal stromal infection is caused by a binucleated oval spore that is Nosema-like in character. The conjunctival and corneal epithelial infection occurs in HIV-sero-positive individuals and is caused by a spore containing a single nucleus that is a member of the genus Encephalitozoon. Characteristics of these genera and the above-mentioned infections are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号