首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X Li  B Cui  Q Yang  H Tian  Y Lan  T Wang  Z Han 《PloS one》2012,7(7):e42042
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO(3)-N and NH(4)-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes.  相似文献   

2.
不同密度樟子松人工林土壤碳氮磷化学计量特征   总被引:4,自引:0,他引:4  
以科尔沁沙地不同密度(490、750、1550、1930、2560株·hm^-2)樟子松人工林(栽植于1980年)为研究对象,分析林分密度对土壤碳、氮、磷浓度及其计量比的影响,研究林分密度与土壤养分状况的关系。结果表明:随着樟子松林密度增加,各土层(0~10、10~20和20~40 cm)土壤有机碳、全氮、全磷浓度和C∶N呈先增加后降低趋势,而土壤有效磷浓度呈先降低后增加趋势。土壤有机碳浓度在490株·hm^-2密度小于其他密度,而有效磷浓度大于其他密度;土壤C∶P和N∶P在2560株·hm^-2密度显著大于其他密度。各密度樟子松林土壤有机碳、全氮、全磷和有效磷浓度在0~10 cm土层显著大于10~20和20~40cm土层,樟子松人工林土壤养分具有表聚性。通过典范对应分析发现,密度对樟子松林土壤养分影响的主要因子是土壤有机碳、全氮和全磷,且密度为1550株·hm^-2时土壤有机碳、全氮、全磷和碱解氮浓度较高,而C∶P和N∶P较低。因此,当樟子松人工林密度为1550株·hm^-2时,土壤养分浓度较高,林木生长较好,为最佳经营密度。  相似文献   

3.
《Acta Oecologica》1999,20(4):249-258
Decomposition of salt marsh plants results from physical, chemical and biological processes including abiotic and biotic fragmentation, microbial decay and chemical transformation. According to literature data, only a few species have the ability to feed directly on living plant material, so fungi and bacteria seem to be the principal competitors for the organic substrates. Nevertheless, by consuming bacteria, protists and fungi associated to the detritus, macrofauna and meiofauna recycle the incorporated nutrients. Moreover, this nutrient regeneration may be seen as an effective factor in maintaining and stimulating bacterial production. In fact, it is well known that many detritus feeding species have very low assimilation efficiencies. The objective of the present study was to compare the nutrient mass balance of carbon; nitrogen and phosphorus in Spartina maritima covered areas and bare bottom sediment, with and without contribution of macrofauna, meiofauna and microbial populations. Nutrients mass balance was studied taking into account the initial and final nutrient concentrations in the sediment, water and plant material. Faunal activity was measured as a function of remineralised carbon, nitrogen and phosphorus. The experimental set-up included sixteen sub-experiments, which varied with respect to type of fauna, plant biomass and oxic status. Each sub-experiment was performed in small glass containers (3 L) containing about 900 g wwt sediment and 2.5 L estuarine water. Plant material, cut from intact plants, sediment cores and estuarine water were brought from the southern arm of the Mondego estuary (Portugal). The results showed that although the bacterial activity was responsible for the Spartina maritima degradation, the presence of meiofauna and macrofauna significantly enhanced the process. Moreover, the presence of Spartina maritima positively affected the mineralisation of the sediment carbon and nitrogen, especially when the three faunal components were present, and denitrification rates were highest in the presence of the macrofauna and meiofauna. The present study suggests that macrofauna and meiofauna have an important role on the ecosystem nutrient flux and that fauna might function as a sink for excess nutrients, that otherwise could be exported to the coastal waters.  相似文献   

4.
Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance– covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter.  相似文献   

5.
Lovelock CE  Feller IC 《Oecologia》2003,134(4):455-462
In a hypersaline mangrove scrub forest in northern Florida, coexisting trees of Laguncularia racemosa and Avicennia germinans were either fertilized with nitrogen or phosphorus, or not fertilized (controls). We aimed to test whether nutrient additions differentially altered photosynthetic performance and resource utilization in these two species. In control trees, photosynthetic rates were higher in L. racemosa than A. germinans. However, leaf nitrogen concentrations were higher in A. germinans than L. racemosa. Avicennia germinans responded to fertilization with nitrogen by increasing leaf nitrogen concentrations and rates of photosynthesis such that they were equivalent to photosynthesis in L. racemosa. Laguncularia racemosa did not show a response to nitrogen additions. Neither species showed strong responses to phosphorus fertilization. Avicennia germinans had high photosynthetic water-use efficiency (photosynthesis/transpiration), but low photosynthetic nitrogen-use efficiency (photosynthesis/leaf nitrogen). In contrast, L. racemosa had comparatively low photosynthetic water use efficiency and high photosynthetic nitrogen use efficiency. Leaf level characteristics lead us to hypothesize that coexistence of A. germinans and L. racemosa should occur where nitrogen levels are low and salinity is moderate, or at least moderate for some period of the year.  相似文献   

6.
The aim of this work was to evaluate the role of different environmental conditions (oxic and anoxic), and the presence of macrofauna and/or meiofauna during the different steps of Scirpus maritimus L. decomposition/mineralization under controlled laboratory conditions. The results showed no significant differences between the anaerobic and the aerobic degradation of plant material, under the presence of bacteria or meiofauna. Nevertheless, under anoxic conditions sediment mineralization was enhanced, with an increase concentration of phosphorus and ammonium in the water phase. Concerning the presence of fauna, results show that, although bacterial activity was responsible for 70% of the S. maritimus leaves degradation, the presence of macrofauna together with meiofauna enhanced the leaves mineralization up to 90%. Moreover, the presence of macrofauna together with meiofauna significantly affected the decomposition of phosphorus and of nitrogen, as well as the leaves lesser labile structural parts, by increasing the mineralization of plant carbon, and raised the nutrient turnover within the system.The present study reinforces the functional link between fauna levels on the nutrient dynamics in salt marshes ecosystems, namely at the vegetation detritus/water column interface. Handling editor: S. M. Thomaz  相似文献   

7.
Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both.  相似文献   

8.
While a large number of studies have investigated the effects of macronutrients such as nitrogen (N) or phosphorus (P) on litter decomposition, recent studies suggest that micronutrients including zinc (Zn) may also limit decomposition rates. Our goal was to compare the effects of nutrient addition on decomposition of two leaf litter types from tropical dry forest trees in a short-term laboratory microcosm experiment. Single nutrients (N, P, Zn, potassium, magnesium, and nickel) were applied to leaf litter in solution at low or high concentrations (to mimic in situ availability or to alleviate nutrient limitation, respectively), and decomposition was assessed as final mass remaining and carbon dioxide mineralization. Both mass remaining and CO2 mineralization were affected by nutrient identity and concentration, and these effects varied by species. In general, P and Zn addition increased decomposition, Mg and N inhibited it, and K and Ni had no significant effects. Future studies should consider the interactions between decomposition processes, decomposer communities, and a wider range of macro- and micronutrients.  相似文献   

9.
Nutrient regeneration is essential to sustained primary production in the aquatic environment because of coupled physical and metabolic gradients. The commonly evaluated ecosystem perspective of nutrient regeneration, as is illustrated among planktonic paradigms of lake ecosystems, functions only at macrotemporal and spatial scales. Most inland waters are small and shallow. Consequently, most organic matter of these waters is derived from photosynthesis of emergent, floating-leaved, and submersed higher plants and microflora associated with living substrata and detritus, including sediments, as well as terrestrial sources. The dominant primary productivity of inland aquatic ecosystems is not planktonic, but rather is associated with surfaces. The high sustained rates of primary production among sessile communities are possible because of the intensive internal recycling of nutrients, including carbon. Steep gradients exist within these attached microbial communities that (a) require rapid, intensive recycling of carbon, phosphorus, nitrogen, and other nutrients between producers, particulate and dissolved detritus, and bacteria and protists: (b) augment internal community recycling and losses with small external inputs of carbon and nutrients from the overlying water or from the supporting substrata; and (c) encourage maximal conservation of nutrients. Examples of microenvironmental recycling of carbon, phosphorus, and oxygen among epiphytic, epipelic, and epilithic communities are explained. Recalcitrant dissolved organic compounds from decomposition can serve both as carbon and energy substrates as well as be selectively inhibitory to microbial metabolism and nutrient recycling. Rapid recycling of nutrient and organic carbon within micro-environments operates at all levels, planktonic as well as attached, and is mandatory for high sustained productivity.  相似文献   

10.
Various nutrient incorporation and plant production parameters were measured to assess their relative usefulness in determining possible nutrient limitation of the wetland plant Peltandra virginica (L.) Kunth. From four stations located along a transect in a tidal freshwater marsh, we documented spatial differences in peak standing biomass of plants. Plant biomass was positively correlated with porewater concentrations of both ammonium and phosphate, but not with sediment concentrations of total nitrogen and phosphorus. Tissue nitrogen and phosphorus concentrations decreased significantly over the growing season, but there were no differences among plants from the four stations, and correlations between plant biomass and ratios of carbon to nitrogen and carbon to phosphorus were weak. Because in situ fertilization of plants had no effect on either peak biomass or tissue concentrations of nitrogen and phosphorus, growth of Peltandra was probably not nutrient limited. Other criteria did predict nitrogen or nitrogen and phosphorus limitation, however, demonstrating that application of parameters used by ecologists to support contentions of nutrient limitation can yield conflicting results. Assessment of nutrient limitation of primary producers may be an ambiguous and unnecessary task in some environments where these criteria are utilized.  相似文献   

11.
对比高海拔亚高山森林林下地衣、藓类及维管植物叶片的光合相关性状 在高海拔亚高山森林中,许多地衣和藓类植物欣欣向荣,甚至成为林地表层的优势物种。尽管它们在森林生态系统中承担着不可替代的功能,但我们对其光合作用相关的功能性状水平知之甚少,对相同生境下藓类植物和维管植物的比较研究也较为匮乏。因此,本研究选择中国青藏高原东缘亚高山林下常见的3种地衣、3种藓类和4种维管植物,测定并对比了它们的碳、氮、磷含量及化学计量比、单位面积光合组织干重、叶绿素含量及光合光响应曲线的异同。研究结果表明,林下地衣的氮含量高于藓类植物,二者的氮、磷、叶绿素、光合速率及光合氮利用效率均低于维管植物叶片。不同种类地衣的光合相关性状与其生长环境相符,而林地表层的3种藓类植物和3种草本植物的功能性状在各自功能群中的种间差异均不显著。总之,这些结果表明高海拔亚高山林下地衣和藓类植物的优势与其光合相关性状关系不大,对严酷环境较强的适应能力可能是它们得以繁荣生长的关键。  相似文献   

12.
Little is known about the stoichiometry of nutrient cycling by detritivores. Therefore, we explored stoichiometric relationships in an omnivorous/detritivorous fish (gizzard shad, Dorosoma cepedianum) in three lakes that differed in productivity. Gizzard shad can feed on plankton and sediment detritus, but in all three lakes adult gizzard shad derived >98% of carbon (C) and phosphorus (P), and >90% of nitrogen (N) from sediment detritus, and the remainder from zooplankton.
Gizzard shad selectively consumed detritus with higher C, N and P concentrations than ambient lake sediments. Selective detritivory (i.e. the nutrient content of consumed detritus divided by the nutrient content of ambient detritus) was most pronounced in the lake with the lowest detrital nutrient concentrations. N and P cycling rates per fish were also consistently higher in this lake, in agreement with the prediction of stoichiometry theory that excretion rates should increase with food nutrient content. Among-lake differences in nutrient cycling rates were unrelated to inter-lake variation in fish body nutrient contents, which was minimal. The N:P ratio excreted was near Redfield (∼14:1) in all three lakes.
Stoichiometric analyses showed that the C:N and C:P ratios of sediment detritus were much higher (∼2.8×) than ratios of gizzard shad bodies, revealing substantial N and P imbalances between consumers and their food source. Gizzard shad alleviate N imbalance by selectively feeding on high N detritus (low C:N, high N:P), and apparently alleviate P imbalance by excreting nutrients at a higher N:P than that of their food or their bodies. Thus, this detritivore apparently regulates nutrient acquisition and allocation via both pre-absorption processes (selective feeding) and post-absorptive processes (differential N and P excretion).  相似文献   

13.
细根能敏感地感知土壤环境变化,对植物生长发育具有重要影响.以6年生翅荚木人工林为对象,对其不同径阶的细根主要功能性状与根际土壤养分特征及两者间关系进行分析.结果表明:细根生物量、根长密度与根体积密度均随径阶增加而增加,比根长与比根面积则随径阶增加呈先升高再下降后升高的趋势,根组织密度则与径阶大小不相关.不同径阶翅荚木根际土壤的pH值及含水率、全碳、全磷、铵态氮、硝态氮和总有效氮含量均存在显著差异,大径阶林木的根际土壤全碳、全氮、硝态氮、总有效氮含量相对较高,小径阶林木的根际土壤含水率、土壤全磷、铵态氮含量相对较高.土壤全氮、全碳、硝态氮和总有效氮含量与林木细根的生物量、根长密度、根体积密度呈显著正相关;土壤全磷与林木细根的根组织密度呈显著正相关,与比根长、比根面积呈显著负相关;土壤含水率与林木细根的生物量和根体积密度均呈显著正相关;根际土壤pH和林木细根的比根长、比根面积呈显著正相关,与根组织密度则呈显著负相关.研究结果可为翅荚木优良种质资源选育提供科学依据.  相似文献   

14.
不同施肥条件下毛叶苕子的腐解及养分释放特征   总被引:6,自引:0,他引:6  
利用田间埋袋法,研究不施肥、施氮肥、施石灰3种处理对豫南稻田毛叶苕子腐解及养分释放特征的影响.结果表明:不同施肥处理下毛叶苕子累积腐解率为65.3%~72.5%,腐解过程中呈现前11 d腐解较快、后期腐解缓慢并逐渐趋于平稳的趋势.不同处理养分释放率表现为钾>磷>碳>氮,试验结束时(翻压148 d),碳、氮、磷、钾的累积释放率分别为83.6%~84.6%、78.2%~81.2%、89.8%~91.4%、96.3%~97.0%.在整个腐解期内,毛叶苕子氮释放特征与腐解特征相似,与不施肥相比,施石灰促进毛叶苕子腐解及氮、磷、钾养分释放;施氮肥促进毛叶苕子磷释放,抑制钾释放;施石灰和氮肥对碳释放均无显著影响.施氮肥处理腐解0~11 d促进毛叶苕子腐解及氮释放,腐解11~148 d抑制毛叶苕子腐解及氮释放.采用一级动力学方程及对数函数方程拟合豫南稻区毛叶苕子腐解及碳、氮、磷、钾养分释放特征均达到显著水平,拟合方程的特征参数值与毛叶苕子腐解率及养分释放率呈显著相关.施用石灰促进毛叶苕子腐解及养分释放的效果优于施用氮肥;一级动力学方程及对数函数方程特征参数值可较好地描述毛叶苕子腐解及养分释放能力.  相似文献   

15.
The importance of detritus varies greatly among shore zones of lakes, but in a large majority of these regions detrital pathways prevail. Aside from a great spatial and seasonal variability, macrophytes and bottom sediments appear to be dominant stores of nutrients in these habitats. Macrophytes hold a central position in nutrient cycling in the shore-littoral lake zones. They are the main source of autochthonous detritus as they prevail in the total biomass of littoral organisms, and they are only rarely available as direct food of consumers. Various processes and interactions determine the role of macrophytes in nutrients dynamics. These are: the intensity of nutrient uptake and translocation, release of nutrients by healthy plants and from decomposing plants, exchange of elements between macrophytes and their periphyton, as well as interception of seston by macrophyte stands. Particular plant species differ in their time of dying and susceptibility to decomposition. The changes in decomposing material (size structure of particles and nutrient content) mean that detritus in various stages of decomposition differs in its role in trophic dynamics of shore-littoral lake zones. Several types of shore regions as regards detritus sources and retention level are discussed.  相似文献   

16.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

17.
The relative contribution of different soil organism groups to nutrient cycling has been quantified for a number of ecosystems. Some functions, particularly within the N-cycle, are carried out by very specific organisms. Others, including those of decomposition and nutrient release from organic inputs are, however, mediated by a diverse group of bacteria, protozoa, fungi and invertebrate animals. Many authors have hypothesized that there is a high degree of equivalence and flexibility in function within this decomposer community and thence a substantial extent of redundancy in species richness and resilience in functional capacity. Three case studies are presented to examine the relationship between soil biodiversity and nitrogen cycling under global change in ecosystem types from three latitudes, i.e. tundra, temperate grassland and tropical rainforest. In all three ecosystems evidence exists for the potential impact of global change factors (temperature change, CO2 enrichment, land-use-change) on the composition and diversity of the soil community as well as on various aspects of the nitrogen and other cycles. There is, however, very little unequivocal evidence of direct causal linkage between species richness and nutrient cycling efficiency. Most of the changes detected are shifts in the influence of major functional groups of the soil biota (e.g. between microflora and fauna in decomposition). There seem to be few data, however, from which to judge the significance of changes in diversity within functional groups. Nonetheless the soil biota are hypothesized to be a sensitive link between plant detritus and the availability of nutrients to plant uptake. Any factors affecting the quantity or quality of plant detritus is likely to change this link. Rigorous experimentation on the relationships between soil species richness and the regulation or resilience of nutrient cycles under global change thus remains a high priority.  相似文献   

18.
水生植物腐烂分解对水质的影响   总被引:11,自引:0,他引:11  
对6种水生植物进行64 d的腐烂分解试验,对比不同水生植物腐烂分解过程中水体营养盐浓度的变化.结果表明: 6种水生植物的腐烂分解速率差别较大,浮叶植物分解速度最快,沉水植物次之,挺水植物最慢.不同水生植物腐解过程对水质影响不同,并与植物生物量密度相关.挺水植物芦苇腐解过程中的水体化学需氧量、总氮和总磷浓度最低;在茭草分解后期,水体化学需氧量和总氮浓度上升,水质变差.浮叶植物荇菜和莲腐解过程中,水体化学需氧量和总氮浓度高于其他植物.沉水植物菹草和狐尾藻腐解过程中,水体铵态氮、硝态氮和总磷浓度最高.对于同一种植物,不同生物量密度处理下,主要水质指标变化趋势相似.适量的植物残体的存在可以有效促进水体氮、磷等营养元素的循环,一定程度上去除硝态氮,降低水体氮负荷.  相似文献   

19.
A fundamental biogeochemical paradox is that nitrogen‐rich tropical forests contain abundant nitrogen‐fixing trees, which support a globally significant tropical carbon sink. One explanation for this pattern holds that nitrogen‐fixing trees can overcome phosphorus limitation in tropical forests by synthesizing phosphatase enzymes to acquire soil organic phosphorus, but empirical evidence remains scarce. We evaluated whether nitrogen fixation and phosphatase activity are linked across 97 trees from seven species, and tested two hypotheses for explaining investment in nutrient strategies: trading nitrogen‐for‐phosphorus or balancing nutrient demand. Both strategies varied across species but were not explained by nitrogen‐for‐phosphorus trading or nutrient balance. This indicates that (1) studies of these nutrient strategies require broad sampling within and across species, (2) factors other than nutrient trading must be invoked to resolve the paradox of tropical nitrogen fixation, and (3) nitrogen‐fixing trees cannot provide a positive nitrogen‐phosphorus‐carbon feedback to alleviate nutrient limitation of the tropical carbon sink.  相似文献   

20.
Fine root decomposition constitutes a critical yet poorly understood flux of carbon and nutrients in terrestrial ecosystems. Here, we present the first large‐scale synthesis of species trait effects on the early stages of fine root decomposition at both global and local scales. Based on decomposition rates for 279 plant species across 105 studies and 176 sites, we found that mycorrhizal association and woodiness are the best categorical traits for predicting rates of fine root decomposition. Consistent positive effects of nitrogen and phosphorus concentrations and negative effects of lignin concentration emerged on decomposition rates within sites. Similar relationships were present across sites, along with positive effects of temperature and moisture. Calcium was not consistently related to decomposition rate at either scale. While the chemical drivers of fine root decomposition parallel those of leaf decomposition, our results indicate that the best plant functional groups for predicting fine root decomposition differ from those predicting leaf decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号