首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major protein component in secreted very low density lipoproteins (VLDL) is apoB, and it is established that these particles can reach sizes approaching 100 nm. We previously employed a cell-free system to investigate the nature of the vesicles in which this large cargo exits the endoplasmic reticulum (ER) (Gusarova, V., Brodsky, J. L., and Fisher, E. A. (2003) J. Biol. Chem. 278, 48051-48058). We found that apoB-containing lipoproteins exit the ER as dense lipid-protein complexes regardless of the final sizes of the particles and that further expansion occurs via post-ER lipidation. Here, we focused on maturation in the Golgi apparatus. In three separate approaches, we found that VLDL maturation (as assessed by changes in buoyant density) was associated with conformational changes in apoB. In addition, as the size of VLDL expanded, apoE concentrated in a subclass of Golgi microsomes or Golgi-derived vesicles that co-migrated with apoB-containing microsomes or vesicles, respectively. A relationship between apoB and apoE was further confirmed in co-localization studies by immunoelectron microscopy. These combined results are consistent with previous suggestions that apoE is required for VLDL maturation. To our surprise, however, we observed robust secretion of mature VLDL when apoE synthesis was inhibited in either rat hepatoma cells or apoE(-/-) mouse primary hepatocytes. We conclude that VLDL maturation in the Golgi involves apoB conformational changes and that the expansion of the lipoprotein does not require apoE; rather, the increase in VLDL surface area favors apoE binding.  相似文献   

2.
One mechanism of the lipid-lowering effects of the fish oil n-3 fatty acids [e.g., docosahexaenoic acid (DHA)] in cell and animal models is induced hepatic apolipoprotein B100 (apoB) presecretory degradation. This degradation occurs post-endoplasmic reticulum, but whether DHA induces it before or after intracellular VLDL formation remains unanswered. We found in McA-RH7777 rat hepatic cells that DHA and oleic acid (OA) treatments allowed formation of pre-VLDL particles and their transport to the Golgi, but, in contrast to OA, with DHA pre-VLDL particles failed to quantitatively assemble into fully lipidated (mature) VLDL. This failure required lipid peroxidation and was accompanied by the formation of apoB aggregates (known to be degraded by autophagy). Preventing the exit of proteins from the Golgi blocked the aggregation of apoB but did not restore VLDL maturation, indicating that failure to fully lipidate apoB preceded its aggregation. ApoB autophagic degradation did not appear to require an intermediate step of cytosolic aggresome formation. Taken with other examples in the literature, the results of this study suggest that pre-VLDL particles that are competent to escape endoplasmic reticulum quality control mechanisms but fail to mature in the Golgi remain subject to quality control surveillance late in the secretory pathway.  相似文献   

3.
The site where bulk lipid is added to apoB100 low density lipoproteins (LDL)/high density lipoproteins (HDL) particles to form triglyceride-enriched very low density lipoproteins (VLDL) has not been identified definitively. We employed several strategies to address this question. First, McA RH7777 cells were pulse-labeled for 20 min with [35S]methionine/cysteine and chased for 1 h (Chase I) to allow study of newly synthesized apoB100 LDL/HDL remaining in the endoplasmic reticulum (ER). After Chase I, cells were incubated for another hour (C2) with/without brefeldin A (BFA) and nocodazole (Noc) (to block ER to Golgi trafficking) and with/without oleic acid (OA). OA treatment alone during C2 increased VLDL secretion. This was prevented by the addition of BFA/Noc in C2. When C2 media were replaced by control media for another 1-h chase (C3), VLDL formed during OA treatment in C2 were secreted into C3 medium. Thus, OA-induced conversion of apoB100 LDL/HDL to VLDL during C2 occurred in the ER. Next, newly synthesized apoB100 lipoproteins were trapped in the Golgi by treatment with Noc and monensin during Chase I (C1), and C2 was carried out in the presence of BFA/Noc with/without OA and without monensin. Under these conditions, OA treatment during C2 did not stimulate VLDL secretion. The same pulse/chase protocols were followed by iodixanol subcellular fractionation, extraction of lipoproteins from ER and Golgi, and sucrose gradient separation of extracted lipoproteins. Cells treated with BFA/Noc and OA in C2 had VLDL in the ER. In the absence of OA, only LDL/HDL were present in the ER. The density of Golgi lipoproteins in these cells was not affected by OA. Similar results were obtained when ER were immuno-isolated with anti-calnexin antibodies. In conclusion, apoB100 bulk lipidation, resulting in conversion of LDL/HDL to VLDL, can occur in the ER, but not in the Golgi, in McA RH7777 cells.  相似文献   

4.
Previous studies with McA-RH7777 cells showed a 15-20-min temporal delay in the oleate treatment-induced assembly of very low density lipoproteins (VLDL) after apolipoprotein (apo) B100 translation, suggesting a post-translational process. Here, we determined whether the post-translational assembly of apoB100-VLDL occurred within the endoplasmic reticulum (ER) or in post-ER compartments using biochemical and microscopic techniques. At steady state, apoB100 distributed throughout ER and Golgi, which were fractionated by Nycodenz gradient centrifugation. Pulse-chase experiments showed that it took about 20 min for newly synthesized apoB100 to exit the ER and to accumulate in the cis/medial Golgi. At the end of a subsequent 20-min chase, a small fraction of apoB100 accumulated in the distal Golgi, and a large amount of apoB100 was secreted into the medium as VLDL. VLDL was not detected either in the lumen of ER or in that of cis/medial Golgi where apoB100 was membrane-associated and sensitive to endoglycosidase H treatment. In contrast, VLDL particles were found in the lumen of the distal Golgi where apoB100 was resistant to endoglycosidase H. Formation of lumenal VLDL almost coincided with the appearance of VLDL in the medium, suggesting that the site of VLDL assembly is proximal to the site of secretion. When microsomal triglyceride transfer protein activity was inactivated after apoB had exited the ER, VLDL formation in the distal Golgi and its subsequent secretion was unaffected. Lipid analysis by tandem mass spectrometry showed that oleate treatment increased the masses of membrane phosphatidylcholine (by 68%) and phosphatidylethanolamine (by 27%) and altered the membrane phospholipid profiles of ER and Golgi. Taken together, these results suggest that VLDL assembly in McA-RH7777 cells takes place in compartments at the distal end of the secretory pathway.  相似文献   

5.
In this study, we tested the hypothesis that two separate pathways, the two-step process and an apolipoprotein B (apoB) size-dependent lipidation process, give rise to different lipoproteins. Expression of apoB-100 and C-terminally truncated forms of apoB-100 in McA-RH7777 cells demonstrated that VLDL particles can be assembled by apoB size-dependent linear lipidation, resulting in particles whose density is inversely related to the size of apoB. This lipidation results in a LDL-VLDL 2 particle containing apoB-100. VLDL 1 is assembled by the two-step process by apoB-48 and larger forms of apoB but not to any significant amount by apoB-41. The major amount of intracellular apoB-80 and apoB-100 banded with a mean density of 1.10 g/ml. Its formation was dependent on the sequence between apoB-72 and apoB-90. This dense particle, which is retained in the cell, possibly by chaperones or association with the microsomal membrane, is a precursor of secreted VLDL 1. The intracellular LDL-VLDL 2 particles formed during size-dependent lipidation appear to be the precursors of intracellular VLDL 1. We propose that the dense apoB-100 intracellular particle is converted to LDL-VLDL 2 by size-dependent lipidation. LDL-VLDL 2 is secreted or converted to VLDL 1 by the uptake of the major amount of triglycerides.  相似文献   

6.
Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis.  相似文献   

7.
Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy.  相似文献   

8.
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.  相似文献   

9.
The movement of VLDL [very-LDL (low-density lipoprotein)] from the ER (endoplasmic reticulum) to the Golgi is required for its eventual secretion from hepatocytes and represents a potential target in controlling elevated concentrations of its metabolite LDL, the major determinant of atherosclerosis. To study this process, an in vitro ER-budding assay was developed to examine the generation of the VTV (VLDL transport vesicle) and PTV (protein transport vesicles) using ER isolated from [(14)C]TAG (triacylglycerol) and [(3)H]protein-labelled primary rat hepatocytes. VTVs do not contain albumin, as determined by immunoblots. VTVs were distributed in light-density fractions, whereas PTVs were mainly in the mid-portion of the sucrose gradient. Electron microscopy revealed that VTVs were larger ( approximately 100-120 nm) in size than PTVs ( approximately 55-70 nm). ER from 0.4 mM OA (oleic acid)-treated hepatocytes budded VTVs of a lighter density as compared with VTVs budded from ER of 0.1 mM or 0.004 mM OA-treated hepatocytes. The generation of VTVs from rat hepatic ER required cytosol, ATP, Sar1 (a GTPase) and incubation at 37 degrees C. Proteinase K treatment did not degrade the VTV cargo protein, apoB100 (apolipoprotein 100), indicating that VTVs were sealed. Immunoblots showed that VTV concentrated apoB100, Sar1 and rSec22b, and excluded albumin and calnexin. VTVs were shown to fuse with cis-Golgi and delivered their cargo to the Golgi lumen, as determined by in vitro fusion, and acquired endoglycosidase H resistance. These results suggest that a new ER-derived transport vesicle (VTV) has been identified and characterized which transports nascent VLDL from the hepatic ER to the Golgi.  相似文献   

10.
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.  相似文献   

11.
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.  相似文献   

12.
Brefeldin A (BFA) added to primary cultures of rat hepatocytes, at a concentration of 0.2 microg/ml, prevented the assembly of newly synthesized apolipoprotein B (apoB) into mature, secretory VLDL but did not prevent the secretion of apoB as denser particles (HDL apoB), or of albumin. The unassembled apoB remained associated with the membranes of the cellular microsomal fraction. There was no effect of BFA on the removal of apoB from the lumen of these vesicles. VLDL apoB formed only a minor component of the total apoB in the microsomal lumen. Higher (5 microg/ml) concentrations of BFA were required to prevent the secretion of HDL apoB and albumin. Under these conditions apoB accumulated in the microsomal lumen, as well as in the membranes of these vesicles. Again, apoB VLDL formed only a minor proportion of the total lumenal apoB. ApoB-48 VLDL and apoB-100 VLDL assembly could be restored by removing BFA from the medium. This reactivation of VLDL assembly was accompanied by an increased removal of apoB from the microsomal membranes, but there was no detectable increase in the small quantity of VLDL apoB that was recovered from the microsomal lumen. In the absence of BFA, during pulse-chase experiments the pattern of change in the specific radioactivity of microsomal membrane apoB was similar to that of the secreted VLDL apoB whereas that of the lumenal apoB resembled that of the secreted HDL apoB. The results suggest that membrane-associated apoB is the main direct precursor of secreted VLDL apoB in primary cultures of rat hepatocytes and that VLDL assembly does not involve primarily microsomal lumenal apoB as an intermediate.  相似文献   

13.
Apolipoprotein B (apoB) is required for the hepatic assembly and secretion of very low density lipoprotein (VLDL). The LDL receptor (LDLR) promotes post-translational degradation of apoB and thereby reduces VLDL particle secretion. We investigated the trafficking pathways and ligand requirements for the LDLR to promote degradation of apoB. We first tested whether the LDLR drives apoB degradation in an endoplasmic reticulum (ER)-associated pathway. Primary mouse hepatocytes harboring an ethyl-nitrosourea-induced, ER-retained mutant LDLR secreted comparable levels of apoB with LDLR-null hepatocytes, despite reduced secretion from cells expressing the wild-type LDLR. Additionally, treatment of cells with brefeldin A inhibited LDLR-dependent degradation. However, this rescue was reversible, and degradation of apoB occurred upon removal of brefeldin A. To characterize the lipoprotein reuptake pathway of degradation, we employed an LDLR mutant defective in constitutive endocytosis and internalization of apoB. This mutant was as effective in reducing apoB secretion as the wild-type LDLR. However, the effect was dependent on apolipoprotein E (apoE) as only the wild-type LDLR, and not the endocytic mutant, reduced apoB secretion in apoE-null cells. Treatment with heparin rescued a pool of apoB in cells expressing the endocytic mutant, indicating that reuptake of VLDL via apoE still occurs with this mutant. Finally, an LDLR mutant defective in binding apoB but not apoE reduced apoB secretion in an apoE-dependent manner. Together, these data suggest that the LDLR directs apoB to degradation in a post-ER compartment. Furthermore, the reuptake mechanism of degradation occurs via internalization of apoB through a constitutive endocytic pathway and apoE through a ligand-dependent pathway.  相似文献   

14.
Cardozo C  Wu X  Pan M  Wang H  Fisher EA 《Biochemistry》2002,41(31):10105-10114
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.  相似文献   

15.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

16.
Apolipoprotein B-100 (ApoB) is the principal component of very low density lipoprotein. Poorly lipidated nascent ApoB is extracted from the Sec61 translocon and degraded by proteasomes. ApoB lipidated in the endoplasmic reticulum (ER) lumen is also subjected to proteasomal degradation, but where and how it dislocates to the cytoplasm remain unknown. In the present study, we demonstrate that ApoB after lipidation is dislocated to the cytoplasmic surface of lipid droplets (LDs) and accumulates as ubiquitinated ApoB in Huh7 cells. Depletion of UBXD8, which is almost confined to LDs in this cell type, decreases recruitment of p97 to LDs and causes an increase of both ubiquitinated ApoB on the LD surface and lipidated ApoB in the ER lumen. In contrast, abrogation of Derlin-1 function induces an accumulation of lipidated ApoB in the ER lumen but does not increase ubiquitinated ApoB on the LD surface. UBXD8 and Derlin-1 bind with each other and with lipidated ApoB and show colocalization around LDs. These results indicate that ApoB after lipidation is dislocated from the ER lumen to the LD surface for proteasomal degradation and that Derlin-1 and UBXD8 are engaged in the predislocation and postdislocation steps, respectively.  相似文献   

17.
Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.  相似文献   

18.
Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the conversion of phosphatidylethanolamine to phosphatidylcholine (PC). We investigated whether there was diminished secretion of lipoproteins from hepatocytes derived from mice that lacked PEMT (Pemt(-/-)) compared with Pemt(+/+) mice. Hepatocytes were incubated with 0.75 mm oleate, the media were harvested, and triacylglycerol (TG), PC, apolipoprotein (apo) B100, and apoB48 were isolated and quantified. Compared with hepatocytes from Pemt(+/+) mice, hepatocytes from Pemt(-/-) mice secreted 50% less TG, whereas secretion of PC was unaffected. Fractionation of the secreted lipoproteins on density gradients demonstrated that the decrease in TG was in the very low density lipoprotein (VLDL)/low density lipoprotein fractions. The secretion of apoB100 was decreased by approximately 70% in VLDLs/low density lipoproteins, whereas there was no significant decrease in apoB48 secretion in any fraction. Transfection of McArdle hepatoma cells (that lack PEMT) with PEMT cDNA enhanced secretion of TG in the VLDLs. Because the levels of PC in the hepatocytes and hepatoma cells were unaffected by the lack of PEMT expression, there appears to be an unexpected requirement for PEMT in the secretion of apoB100-containing VLDLs.  相似文献   

19.
Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1D198A) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1D189A also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.  相似文献   

20.
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号