首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
2.
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection.  相似文献   

3.
4.
The incorporation of tegument proteins into the herpes simplex virus 1 (HSV-1) virion during virion assembly is thought to be a complex, multistage process occurring via numerous interactions between the tegument and the capsid, within the tegument, and between the tegument and the envelope. Here, we set out to examine if the direct interaction between two essential tegument proteins VP1/2 and VP16 is required for connecting the inner tegument with the outer tegument. By using glutathione S-transferase (GST) pulldowns, we identified an essential role of lysine 343 in VP16, mutation of which to a neutral amino acid abrogated the interaction between VP1/2 and VP16. When the K343A substitution was inserted into the gene encoding VP16 (UL48) of the viral genome, HSV-1 replicated successfully although its growth was delayed, and final titers were reduced compared to titers of wild-type virus. Surprisingly, the mutated VP16 was incorporated into virions at levels similar to those of wild-type VP16. However, the analysis of VP16 on cytoplasmic capsids by fluorescence microscopy showed that VP16 associated with cytoplasmic capsids less efficiently when the VP16-VP1/2 interaction was inhibited. This implies that the direct interaction between VP1/2 and VP16 is important for the efficiency/timing of viral assembly but is not essential for HSV-1 replication in cell culture. These data also support the notion that the incorporation of tegument proteins into the herpesviruses is a very complex process with significant redundancy.  相似文献   

5.
J I Cohen  K Seidel 《Journal of virology》1994,68(12):7850-7858
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV.  相似文献   

6.
The protein encoded by the UL14 gene of herpes simplex virus type 1 (HSV-1) and HSV-2 is expressed late in infection and is a minor component of the virion tegument. An UL14-deficient HSV-1 mutant (UL14D) forms small plaques and exhibits an extended growth cycle at low multiplicities of infection (MOI) compared to wild-type virus. Although UL14 is likely to be involved in the process of viral maturation and egress, its precise role in viral replication is still enigmatic. In this study, we found that immediate-early viral mRNA expression was decreased in UL14D-infected cells. Transient coexpression of UL14 and VP16 in the absence of infection stimulated the nuclear accumulation of both proteins. We intended to visualize the fate of VP16 released from the infected virion and constructed UL14-null (14D-VP16G) and rescued (14R-VP16G) viruses that expressed a VP16-green fluorescent protein (GFP) fusion protein. Synchronous high-multiplicity infection of the viruses was performed at 4°C in the absence of de novo protein synthesis. We found that the presence of UL14 in the virion had an enhancing effect on the nuclear accumulation of VP16-GFP. The lack of UL14 did not significantly alter virus internalization but affected incoming capsid transport to the nuclear pore. These observations suggested that UL14 (i) enhanced VP16 nuclear localization at the immediately early phase, thus indirectly regulating the expression of immediate-early genes, and (ii) was associated with efficient nuclear targeting of capsids. The tegument protein UL14 could be part of the machinery that regulates HSV-1 replication.  相似文献   

7.
8.
9.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   

10.
The VP22 protein of herpes simplex virus type 2 (HSV-2) is a major component of the virion tegument. Previous work with HSV-1 indicated that VP22 is phosphorylated during infection, and phosphorylation may play a role in modulating VP22 localization in infected cells. It is not clear, however, when phosphorylation occurs in infected cells or how it is regulated. Less is known about the synthesis and phosphorylation of HSV-2 VP22. To study the complete biosynthetic history of HSV-2 VP22, we generated a monoclonal antibody to the carboxy terminus of VP22. Using immunoprecipitation and Western blot analyses, we show that HSV-2 VP22 can be found in three distinct isoforms in infected cells, two of which are phosphorylated. Like HSV-1 VP22, HSV-2 VP22 is synthesized ca. 4 h after infection, and the isoform later incorporated into virions is hypophosphorylated. In addition, we demonstrate for the first time (i) that newly synthesized VP22 is phosphorylated rapidly after synthesis, (ii) that this phosphorylation occurs in a virus-dependent manner, (iii) that the HSV-2 kinase UL13 is capable of inducing phosphorylation of VP22 in the absence of other viral proteins, (iv) that phosphorylated VP22 is very stable in infected cells, (v) that phosphorylated isoforms of VP22 are gradually dephosphorylated late in infection to produce the virion tegument form, and (vi) that this dephosphorylation occurs independently of viral DNA replication or virion assembly. These results indicate that HSV-2 VP22 is a stable protein that undergoes highly regulated, virus-dependent phosphorylation events in infected cells.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

12.
Pomeranz LE  Blaho JA 《Journal of virology》2000,74(21):10041-10054
VP22, the 301-amino-acid phosphoprotein product of the herpes simplex virus type 1 (HSV-1) U(L)49 gene, is incorporated into the tegument during virus assembly. We previously showed that highly modified forms of VP22 are restricted to infected cell nuclei (L. E. Pomeranz and J. A. Blaho, J. Virol. 73:6769-6781, 1999). VP22 packaged into infectious virions appears undermodified, and nuclear- and virion-associated forms are easily differentiated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994). As VP22 packaging-associated undermodification is unique among HSV-1 tegument proteins, we sought to determine the role of VP22 during viral replication. We now show the following. (i) VP22 modification occurs in the absence of other viral factors in cell lines which stably express its gene. (ii) RF177, a recombinant HSV-1 strain generated for this study, synthesizes only the amino-terminal 212 amino acids of VP22 (Delta212). (iii) Delta212 localizes to the nucleus and incorporates into virions during RF177 infection of Vero cells. Thus, the carboxy-terminal region is not required for nuclear localization of VP22. (iv) RF177 synthesizes the tegument proteins VP13/14, VP16, and VHS (virus host shutoff) and incorporates them into infectious virions as efficiently as wild-type virus. However, (v) the loss of VP22 in RF177 virus particles is compensated for by a redistribution of minor virion components. (vi) Mature RF177 virions are identical to wild-type particles based on electron microscopic analyses. (vii) Single-step growth kinetics of RF177 in Vero cells are essentially identical to those of wild-type virus. (viii) RF177 plaque size is reduced by nearly 40% compared to wild-type virus. Based on these results, we conclude that VP22 is not required for tegument formation, virion assembly/maturation, or productive HSV-1 replication, while the presence of full-length VP22 in the tegument is needed for efficient virus spread in Vero cell monolayers.  相似文献   

13.
14.
The virion host shutoff (vhs) protein of herpes simplex virus (HSV) has endoribonuclease activity and rapidly reduces protein synthesis in infected cells through mRNA degradation. Herpes simplex virus 1 (HSV-1) and HSV-2 vhs mutants are highly attenuated in vivo, but replication and virulence are largely restored to HSV-2 vhs mutants in the absence of a type I interferon (IFN) response. The role of vhs in pathogenesis and the hindrance of the type I IFN response have classically been examined with viruses that completely lack vhs or express a truncated vhs protein. To determine whether RNase activity is the principal mechanism of vhs-mediated type I IFN resistance and virulence, we constructed a HSV-2 point mutant that synthesizes full-length vhs protein lacking RNase activity (RNase(-) virus). Wild-type and mutant HSV-2 vhs proteins coimmunoprecipitated with VP16 and VP22. vhs protein bearing the point mutation was packaged into the virion as efficiently as the wild-type vhs protein. Like a mutant encoding truncated vhs, the RNase(-) virus showed IFN-dependent replication that was restricted compared with that of the wild-type virus. The RNase(-) virus was highly attenuated in wild-type mice infected intravaginally, with reduced mucosal replication, disease severity, and spread to the nervous system comparable to those of the vhs truncation mutant. Surprisingly, in alpha/beta interferon (IFN-alpha/beta) receptor knockout mice, the vhs RNase mutant was more attenuated than the vhs truncation mutant in terms of disease severity and virus titer in vaginal swabs and central nervous system samples, suggesting that non-enzymatically active vhs protein interferes with efficient virus replication. Our results indicate that vhs enzymatic activity plays a complex role in vhs-mediated type I IFN resistance during HSV-2 infection.  相似文献   

15.
16.
17.
18.
The UL49 gene product (VP22) of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is a virion phosphoprotein which accumulates inside infected cells at late stages of infection. We previously (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994) discovered that the form of VP22 packaged into infectious virions differed from VP22 extracted from infected-cell nuclei in that the virion-associated form had a higher electrophoretic mobility in denaturing gels. Based on these results, we proposed that VP22 in virions was "undermodified" in some way. The goal of this study is to document the biological and biochemical properties of VP22 throughout the entire course of a productive HSV-1 infection. We now report the following. (i) VP22 found in infected cells is distributed in at least three distinct subcellular localizations, which we define as cytoplasmic, diffuse, and nuclear, as measured by indirect immunofluorescence. (ii) Using a synchronized infection system, we determined that VP22 exists predominantly in the cytoplasm early in infection and accumulates in the nucleus late in infection. (iii) While cytoplasmic VP22 colocalizes with the HSV-1 glycoprotein D early in infection, the nuclear form of VP22 is not restricted to replication compartments which accumulate ICP4. (iv) VP22 migrates as at least three unique electrophoretic species in denaturing sodium dodecyl sulfate-DATD-polyacrylamide gels. VP22a, VP22b, and VP22c have high, intermediate, and low mobility, respectively. (v) The relative distribution of the various forms of VP22 derived from infected whole-cell extracts varies during the course of infection such that low-mobility species predominate at early times and high-mobility forms accumulate later. (vi) The highest-mobility forms of VP22 partition with the cytoplasmic fraction of infected cells, while the lowest-mobility forms are associated with the nuclear fraction. (vii) Finally, full-length VP22 which partitions in the nucleus incorporates radiolabel from [32P]orthophosphate whereas cytoplasmic VP22 does not. Based on these results, we conclude that modification of VP22 coincides with its appearance in the nucleus during the course of productive HSV-1 infection.  相似文献   

19.
In this report we propose a model in which after the herpes simplex virus (HSV) capsid docks at the nuclear pore, the tegument protein attached to the capsid must be cleaved by a serine or a cysteine protease in order for the DNA to be released into the nucleus. In support of the model are the following results. (i) Exposure of cells at the time of or before infection to l-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK), a serine-cysteine protease inhibitor, prevents the release of viral DNA or expression of viral genes. TPCK does not block viral gene expression after entry of viral DNA into the nucleus. (ii) The tegument protein VP1-2, the product of the U(L)36 gene, is cleaved shortly after the entry of the HSV 1 (HSV-1) virion into the cell. (iii) The proteolytic cleavage of VP1-2 does not occur in cells that are infected with HSV-1 under conditions that prevent the release of the viral DNA into the nucleus. (iv) The proteolytic cleavage of VP1-2 occurs only after the capsid is attached to the nuclear pore. Thus, TPCK prevented the release of HSV-1 DNA into the nucleus when added to medium 1 hour after infection with tsB7 at 39.5 degrees C followed by a shift down to the permissive temperature. The ts lesion maps in the U(L)36 gene. At the nonpermissive temperature, the capsids accumulate at the nuclear pore but the DNA is not released into the nucleus.  相似文献   

20.
Lesions resulting from recurrent genital herpes simplex virus (HSV) infection are characterized by infiltration of CD4+ lymphocytes. We have investigated the antigenic specificity of 47 HSV-specific CD4+ T-cell clones recovered from the HSV-2 buttock and thigh lesions of five patients. Clones with proliferative responses to recombinant truncated glycoprotein B (gB) or gD of HSV-2 or purified natural gC of HSV-2 comprised a minority of the total number of HSV-specific clones isolated from lesions. The gC2- and gD2-specific CD4+ clones had cytotoxic activity. The approximate locations of the HSV-2 genes encoding HSV-2 type-specific CD4+ antigens have been determined by using HSV-1 x HSV-2 intertypic recombinant virus and include the approximate map regions 0.30 to 0.46, 0.59 to 0.67, 0.67 to 0.73, and 0.82 to 1.0 units. The antigenic specificity of an HLA DQ2-restricted, HSV-2 type-specific T-cell clone was mapped to amino acids 425 to 444 of VP16 of HSV-2 by sequential use of an intertypic recombinant virus containing VP16 of HSV-2 in an HSV-1 background, recombinant VP16 fusion proteins, and synthetic peptides. Each of the remaining four patients also yielded at least one type-specific T-cell clone reactive with an HSV-2 epitope mapping to approximately 0.67 to 0.73 map units. The antigenic specificities of lesion-derived CD4+ T-cell clones are quite diverse and include at least 10 epitopes. Human T-cell clones reactive with gC and VP16 are reported here for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号