共查询到20条相似文献,搜索用时 0 毫秒
1.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work
confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
2.
Here, we analyze long-term evolution in Nicotiana allopolyploid section Repandae (the closest living diploids are N. sylvestris, the maternal parent, and N. obtusifolia, the paternal parent). We compare data with other more recently formed Nicotiana allopolyploids. We investigated 35S and 5S nuclear ribosomal DNA (rDNA) chromosomal location and unit divergence. A molecular clock was applied to the Nicotiana phylogenetic tree to determine allopolyploid ages. N. tabacum and species of Repandae were c. 0.2 and 4.5 Myr old, respectively. In all Repandae species, the numbers of both 35S and 5S rDNA loci were less than the sum of those of the diploid progenitors. Trees based on 5S rDNA spacer sequences indicated units of only the paternal parent. In recent Nicotiana allopolyploids, the numbers of rDNA loci equal the sum of those of their progenitors. In the Repandae genomes, diploidization is associated with locus loss. Sequence analysis indicates that 35S and 5S units most closely resemble maternal and paternal progenitors, respectively. In Nicotiana, 4.5 Myr of allopolyploid evolution renders genomic in situ hybridization (GISH) unsuitable for the complete resolution of parental genomes. 相似文献
3.
The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae) 总被引:1,自引:0,他引:1
Leitch IJ Hanson L Lim KY Kovarik A Chase MW Clarkson JJ Leitch AR 《Annals of botany》2008,101(6):805-814
BACKGROUND: In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids. METHODS: Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200,000 years to approx. 4.5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes. KEY RESULTS AND CONCLUSIONS: By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4.5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed. 相似文献
4.
Chase MW Knapp S Cox AV Clarkson JJ Butsko Y Joseph J Savolainen V Parokonny AS 《Annals of botany》2003,92(1):107-127
Phylogenetic relationships in the genus Nicotiana were investigated using parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (nrDNA). In addition, origins of some amphidiploid taxa in Nicotiana were investigated using the techniques of genomic in situ hybridization (GISH), and the results of both sets of analyses were used to evaluate previous hypotheses about the origins of these taxa. Phylogenetic analyses of the ITS nrDNA data were performed on the entire genus (66 of 77 naturally occurring species, plus three artificial hybrids), comprising both diploid and polyploid taxa, and on the diploid taxa only (35 species) to examine the effects of amphidiploids on estimates of relationships. All taxa, regardless of ploidy, produced clean, single copies of the ITS region, even though some taxa are hybrids. Results are compared with a published plastid (matK) phylogeny using fewer, but many of the same, taxa. The patterns of relationships in Nicotiana, as seen in both analyses, are largely congruent with each other and previous evolutionary ideas based on morphology and cytology, but some important differences are apparent. None of the currently recognized subgenera of Nicotiana is monophyletic and, although most of the currently recognized sections are coherent, others are clearly polyphyletic. Relying solely upon ITS nrDNA analysis to reveal phylogenetic patterns in a complex genus such as Nicotiana is insufficient, and it is clear that conventional analysis of single data sets, such as ITS, is likely to be misleading in at least some respects about evolutionary history. ITS sequences of natural and well-documented amphidiploids are similar or identical to one of their two parents-usually, but not always, the maternal parent-and are not in any sense themselves 'hybrid'. Knowing how ITS evolves in artificial amphidiploids gives insight into what ITS analysis might reveal about naturally occurring amphidiploids of unknown origin, and it is in this perspective that analysis of ITS sequences is highly informative. 相似文献
5.
6.
7.
M. B. E. GODWARD F.L.S. KEITH PELL 《Botanical journal of the Linnean Society. Linnean Society of London》1994,115(2):145-159
Two distinct exine patterns were found among plants of Nicotiana x sanderae; studies of the F1 generation, and the F2 produced by self and cross bud-pollination showed one pattern to be recessive, the other dominant, perhaps controlled by two genes. The occurrence of the two patterns in these and other flowering plants and in spores of non-flowering plants is discussed in relation to genie control of exine pattern. 相似文献
8.
Nicotiana tabacum (tobacco, 2n = 4x = 48) is a natural allotetraploid combining two ancestral genomes closely related to modern Nicotiana sylvestris and Nicotiana tomentosiformis. Here we examine the immediate consequences of allopolyploidy on genome evolution using 20 S4-generation plants derived from a single synthetic, S0 plant made by Burk in 1973 (Th37). Using molecular and cytogenetic methods we analysed 14 middle and highly repetitive sequences that together total approximately 4% of the genome. Two repeats related to endogenous geminiviruses (GRD5) and pararetroviruses (NtoEPRV), and two classes of satellite repeats (NTRS, A1/A2) were partially or completely eliminated at variable frequency (25-60%). These sequences are all from the N. tomentosiformis parent. Genomic in situ hybridization revealed additivity in chromosome numbers in two plants (2n = 48), while a third was aneuploid for an N. tomentosiformis-origin chromosome (2n = 49). Two plants had homozygous translocations between chromosomes of the S- and T-genomes. * The data demonstrate that genetic changes in synthetic tobacco were fast, targeted to the paternal N. tomentosiformis-donated genome, and some of the changes showed concordance with changes that presumably occurred during evolution of natural tobacco. 相似文献
9.
Elizabeth W. McCarthy Sarah E. J. Arnold Lars Chittka Steven C. Le Comber Robert Verity Steven Dodsworth Sandra Knapp Laura J. Kelly Mark W. Chase Ian T. Baldwin Ale? Kova?ík Corinne Mhiri Lin Taylor Andrew R. Leitch 《Annals of botany》2015,115(7):1117-1131
Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution.Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts.Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors.Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. 相似文献
10.
Aim Nicotiana section Suaveolentes is largely endemic to Australia but includes one species endemic to Africa, one to New Caledonia and Tongatupa, and one to the Marquesas Islands in the Pacific. Other sections of Nicotiana are found in the New World. In Australia, Suaveolentes is widespread across the continent, with many taxa adapted to the Eremean zone. We aim to analyse the biogeography of the Australian clade, both to shed light on the evolution of the group and to determine general area relationships that provide insight into the history of the arid‐zone biota. Location Mesic and arid regions of continental Australia, the Central–South Pacific and Namibia, Africa. Methods A phylogeny of Suaveolentes, based on morphology and molecular data, was used to analyse the relationships of areas in which the taxa occur. The section is monophyletic, and all but three taxa were included (25). The method of paralogy‐free subtree analysis was employed, with the basal taxon Nicotiana africana used as the outgroup. Results Paralogy‐free subtree analysis found five area subtrees that, when combined, resulted in a minimal area cladogram with six resolved nodes. Pacific and mesic eastern Australia (including Lord Howe Island) are at the base of the area cladogram, followed by the differentiation of North West Australia and later South East Australia. Arid regions of Australia are related, revealing three biogeographical tracks: a northern track including the Great Sandy Desert and Tanami, which are related to the Pilbara; a central track relating the Western Desert, Central Ranges, Eastern Desert and North East Interzone; and a southern track relating the South West Interzone, Nullarbor, Adelaide/Eyre and the South East Interzone. Plesiomorphic taxa with chromosome number n = 24–23 occur on the periphery of the continent, and derived taxa with n = 21, 20, 18, 16–15 identify the tracks across arid Australia. Main conclusions The patterns of distribution and differentiation of Suaveolentes in Australia show that the age of the clade is at least Early Miocene, dating to before the onset of aridification in Australia about 15 Ma. The patterns are also interpreted as evidence that it was vicariance that largely shaped speciation in the Eremean zone, with range expansion of some widespread taxa probably occurring in the most recent cycles of severe drying and mobilization of desert dune sands. 相似文献
11.
Lim KY Souckova-Skalicka K Sarasan V Clarkson JJ Chase MW Kovarik A Leitch AR 《American journal of botany》2006,93(6):875-883
Polyploids have significantly influenced angiosperm evolution. Understanding the genetic consequences of polyploidy is advanced by studies on synthetic allopolyploids that mimic natural species. In Nicotiana, Burk (1973) and Kostoff (1938) generated synthetic tobacco (N. tabacum) using the parents ♀N. sylvestris × ♂N. tomentosiformis. We previously reported rapid genetic changes in the Burk material. Kostoff's material has 24 chromosomes of N. sylvestris origin (S-genome), 24 of N. tomentosiformis origin (T-genome), and a large intergenomic translocation, but not an additive distribution of ribosomal DNA (rDNA) families as expected from the parental contribution. Our new synthetic tobacco lines TR1 and TR2 are chromosomally balanced with no intergenomic translocations and are either sterile or have highly reduced fertility, supporting the nuclear cytoplasmic hypothesis that allopolyploid fertility is enhanced by intergenomic translocations. Two plants of TR1 (TR1-A, TR1-B) have the expected number, structure, and chromosomal distribution of rDNA families, in contrast to Burk's and Kostoff's synthetic tobaccos and to synthetic polyploids of Arabidopsis. Perhaps allopolyploids must pass through meiosis before genetic changes involving rDNA become apparent, or the genetic changes may occur stochastically in different synthetic allopolyploids. The lack of fertility in the first generation of our synthetic tobacco lines may have uses in biopharmacy. 相似文献
12.
Plants of the root holoparasite Orobanche ramosa L. and four of its potential host species, Nicotiana glauca Graham, Nicotiana rustica L., Nicotiana sylvestris Speg. & S.Comes, and Nicotiana tabacum L., grown in the greenhouse in Kiel/Germany, were analyzed for their contents of pyridine alkaloids anabasine (1) and nicotine (2). All investigated samples contained both alkaloids in different amounts. The distribution of the alkaloids in the various plant organs of Nicotiana differed significantly between the species. The alkaloid contents of the Orobanche samples relative to the alkaloid contents of the roots of the respective host plants varied between 3.47 ± 1.08 and 28.8 ± 37.5%. Orobanche plants drain water and crucial nutrients from their hosts; also, some examples for the sequestration of specialized natural products have been reported. O. ramosa is not able to synthesize pyridine alkaloids anabasine (1) and nicotine (2) itself; therefore, the present study proves the sequestration of pyridine alkaloids by O. ramosa from the four investigated Nicotiana host species. 相似文献
13.
The response of axillary buds to floral stimulus activity in stem pieces was examined in two near-isogenic cultivars of tobacco that differ in the recessive maryland mammoth (mm) allele, which confers short-day behavior. All axillary buds from day-neutral plants assayed on six-internode stem pieces made few nodes (less than 20) before flowering, while axillary buds from plants homozygous for mm assayed on six-internode stem pieces either did not flower in noninductive conditions or made many nodes before flowering in inductive conditions. About 80% of day-neutral axillary buds grafted onto day-neutral stem pieces did not respond to floral stimulus in stem pieces, indicating that the floral stimulus in stem pieces is ephemeral. In other graft combinations, the proportion of axillary buds that did respond to floral stimulus in stem pieces was substantially reduced from the 20% of day-neutral buds on day-neutral stem pieces that responded. These results indicate that the mm allele probably reduces both the amount of floral stimulus activity in stem pieces and the competence of axillary buds to respond. 相似文献
14.
Sarah J Bourlat Omar Rota-Stabelli Robert Lanfear Maximilian J Telford 《BMC evolutionary biology》2009,9(1):107-14
Background
Mitochondrial genome comparisons contribute in multiple ways when inferring animal relationships. As well as primary sequence data, rare genomic changes such as gene order, shared gene boundaries and genetic code changes, which are unlikely to have arisen through convergent evolution, are useful tools in resolving deep phylogenies. Xenoturbella bocki is a morphologically simple benthic marine worm recently found to belong among the deuterostomes. Here we present analyses comparing the Xenoturbella bocki mitochondrial gene order, genetic code and control region to those of other metazoan groups. 相似文献15.
Scalibregmatidae is a small annelid family of subsurface deposit feeders in sand or mud, which are generally well adapted to infaunal burrowing. The overall morphology of Scalibregmatidae is very similar, with thick bodies, small parapodia, and no prostomial appendages or short horns. The only exception is members of the genera Axiokebuita and Speleobregma that most frequently inhabit crevices or gravel and possess extensive ventral ciliated palps and globular adhesive pygidium. Character reconstruction using maximum likelihood and Bayesian methods show that ciliated palps and adhesive pygidium are synapomorphies of the Axiokebuita–Speleobregma clade. The most likely transformation series is from horns to ciliated palps, the origin of which correlates with the occurrence of Axiokebuita and Speleobregma in crevices or gravel. The wide spaces among rocks or granules yield high permeability and inertial water flow, preventing deposition of organic matter. Under these flow conditions that differ significantly from those of sand or mud bottom, ciliated palps aid to the collection of suspended particles and an adhesive pygidium provides attachment. With palps being a highly debated character in annelid evolution, it is remarkable that prominent ciliated palps are gained within a lineage of ancestrally nonpalpate annelids, most likely increasing their fitness when colonizing a new environment. 相似文献
16.
Lim KY Kovarik A Matyasek R Chase MW Clarkson JJ Grandbastien MA Leitch AR 《The New phytologist》2007,175(4):756-763
Analyses of selected bacterial artificial chromosomes (BACs) clones suggest that the retrotransposon component of angiosperm genomes can be amplified or deleted, leading to genome turnover. Here, Nicotiana allopolyploids were used to characterize the nature of sequence turnover across the whole genome in allopolyploids known to be of different ages. Using molecular-clock analyses, the likely age of Nicotiana allopolyploids was estimated. Genomic in situ hybridization (GISH) and tandem repeat characterization were used to determine how the parental genomic compartments of these allopolyploids have diverged over time. Paternal genome sequence losses, retroelement activity and intergenomic translocation have been reported in early Nicotiana tabacum evolution (up to 200,000 yr divergence). Here it is shown that within 1 million years of allopolyploid divergence there is considerable exchange of repeats between parental chromosome sets. After c. 5 million years of divergence GISH fails. This GISH failure may represent near-complete genome turnover, probably involving the replacement of nongenic sequences with new, or previously rare sequence types, all occurring within a conserved karyotype structure. This mode of evolution may influence or be influenced by long-term diploidization processes that characterize angiosperm polyploidy-diploid evolutionary cycles. 相似文献
17.
Abstract: Intrageneric relationships in the genus Nicotiana were investigated by comparison of DNA sequences of the matK gene of the chloroplast genome. A total of 40 taxa were examined in this study, representing 39 of the approximately 70 wild species of this genus. We obtained the full sequences of the 1530 bp matK ORFs; no variations in length due to insertions or deletions were found. The phylogenetic trees obtained from maximum parsimony (MP) and neighbour-joining (NJ) methods were fundamentally consistent. The genus Nicotiana formed a clade in these trees. The traditional classification of this genus was mostly in agreement with the molecular phylogeny. However, all three subgenera and some sections did not form a monophyletic group. Character-state mappings were used to infer a centre of origin, biogeographic history, and transition of chromosome number. The results support the previous hypothesis that this genus originated in South America and subsequently spread to other continents. The suggestion that the ancestral basic chromosome number is x = 12 and that polyploidy and aneuploidy have occurred independently several times during the evolution of Nicotiana species is also discussed. 相似文献
18.
Mark W Chase Rosabelle Samuel Andrew R Leitch Maït S Guignard John G Conran Felipe Nollet Paul Fletcher Alja Jakob Luiz A Cauz-Santos Gabriel Vignolle Steven Dodsworth Maarten J M Christenhusz Maria Teresa Buril Ovidiu Paun 《Annals of botany》2023,131(1):123
Background and AimsThe extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia.MethodsWe analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework.Key ResultsRADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15–18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids.ConclusionsThe results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis. 相似文献
19.
Christian Parisod Corinne Mhiri K. Yoong Lim James J. Clarkson Mark W. Chase Andrew R. Leitch Marie-Angèle Grandbastien 《PloS one》2012,7(11)
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization. However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid lineage considered. 相似文献
20.
Schueller SK 《American journal of botany》2004,91(5):672-681
Traits associated with self-pollination are common in island plants. This pattern could simply reflect the vestige of selection during colonization. Alternatively (or in addition), the ability to self-pollinate may provide a reproductive assurance benefit in established island plant populations due to inferior island pollinator service. To test these alternatives I studied an introduced plant (Nicotiana glauca; Solanaceae) on the California mainland and on two Channel Islands colonized at different times (approximately 30 and 100 yr ago). I compared these populations in terms of (1) capacity for self-pollination (self-compatibility, autogamy, stigma-anther distance, and incidence of a crumpled floral morph) and (2) current selection for the ability to self-pollinate (pollinator service by hummingbirds and the effect of emasculation on reproductive success). In general, island plants exhibited a higher capacity for self-pollination than mainland plants, especially on the most recently colonized island. However, island plants were not visited less frequently or more variably, nor did I detect current selection for selfing on islands. This supports the hypothesis that selfing traits in island plants are the product of a filter to successful establishment during colonization and not of selection for selfing in established island populations. 相似文献