首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested one of the predictions of Brunet and Charlesworth (1995) that relative floral sex allocation will vary temporally with the mating environment and that the form of dichogamy (protandry vs. protogyny) will select for the pattern of variation in male versus female resource allocation. In many hermaphroditic plant species, allocation to female function (ovule number) decreases from early to late flowers within inflorescences as a result of resource limitation or ontogenetic changes. This pattern may obscure the effects of the mating environment and dichogamy on selection for allocation patterns in protandrous species (male allocation increases regardless). By examining a protogynous species the alternative pattern of temporal variation in resource allocation is predicted, namely that allocation to male function should decrease (or female allocation increase) throughout the flowering sequence. This pattern was observed in protogynous Aquilegia yabeana (Ranunculaceae), in which ovule number per flower remained constant whereas pollen number decreased in sequentially blooming flowers. These observations support the temporal sex allocation hypothesis of Brunet and Charlesworth (1995).  相似文献   

2.
To test the prediction of sex allocation theory that plants or flowers high in resource status emphasize the female function, we explored the variation in both biomass (the number of pollen grains and ovules) and temporal (male and female durations) sex allocation among and within plants of protandrous Lobelia sessilifolia in relation to plant size and flower position within plants. Among plants, the mean number of pollen grains and ovules per flower of a plant increased with plant size, whereas the mean P/O ratio (number of pollen grains/number of ovules ratio) decreased with plant size. The mean male duration, the mean female duration, and the mean ratio of male duration/flower longevity per flower of a plant were not correlated with plant size. Thus, large plants emphasized female function in terms of biomass sex allocation, which is consistent with the prediction of size-dependent sex allocation theory. The results for temporal sex allocation, however were inconsistent with the theory. Within plants, the mean number of pollen grains and ovules per flower at each position decreased from lower to upper flowers (early to late blooming flowers) and that of the P/O ratio increased from lower to upper flowers. The mean male duration and the mean female duration per flower decreased from lower to upper flowers, whereas the mean ratio of male duration/flower longevity increased from lower to upper flowers. The population sex ratio changed from male-biased to female-biased. Thus, later blooming flowers emphasized the male function in terms of both biomass and temporal sex allocation, consistent with the sex allocation theory, regarding the change in the population sex ratio.  相似文献   

3.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

4.
The relative allocation of resources to male and female functions may vary among flowers within and among individual plants for many reasons. Several theoretical models of sex allocation in plants predict a positive correlation between the resource status of a flower or individual and the proportion of reproductive resources allocated to female function. These models assume that, independent of resource status, a negative correlation exists between male and female investment. Focusing on the allocation of resources within flowers, we tested these theoretical predictions and this assumption using the annual Clarkia unguiculata (Onagraceae). We also sought preliminary evidence for a genetic component to these relationships. From 116 greenhouse-cultivated plants representing 30 field-collected maternal families, multiple flowers and fruits per plant were sampled for gamete production, pollen?:?ovule ratio, seed number, ovule abortion, seed biomass/fruit, mean individual seed mass, and petal area. If sex allocation changes as predicted, then (1) assuming that flowers produced early have access to more resources than those produced later, basal flowers should exhibit a higher absolute and proportional investment in female function than distal flowers and (2) plants of high resource status (large plants) should produce flowers with a higher proportional investment in female function than those of low resource status. Within plants, variation in floral traits conformed to the first prediction. Among plants and families, no significant effects of plant size (dry stem biomass) on intrafloral proportional sex allocation were observed. We detected no evidence for a negative genetic correlation between male and female investment per flower, even when controlling for plant size.  相似文献   

5.
Understanding the fitness of plants with inflorescences requires examining variation in sex allocation among flowers within inflorescences. We examined whether differences in the duration of the male and female phases of flowering lead to variation in sex allocation and reproductive success among flowers within inflorescences. In 2002 and 2003, we quantified floral longevity, floral sex allocation, and reproductive success between the first and the second flowers within inflorescences in a protandrous species, Aquilegia buergeriana var. oxysepala. Floral longevity was greater in the first flowers than in the second ones in both years. The male phase lasted longer, and the initial number of pollen grains and the number of pollen grains removed were greater in the first flowers than in the second ones in both years. Within first flowers, the number of pollen grains removed was greater in flowers that had longer male phases, thus duration of the male phase may positively affect male reproductive success in the first flowers. The female phase lasted longer and the number of ovules was greater in the first flowers than in the second only in 2002. However, seed production per flower and female phase duration in both years were not significantly related. The variation in the number of pollen grains among flowers in this species may be caused by the variation in male phase duration.  相似文献   

6.
Sexual dimorphism is one of the most widespread and recognizable patterns of phenotypic variation in the biotic world. Sexual dimorphism in floral display is striking in the dioecious plant Silene latifolia, with males making many, small flowers compared to females. We investigated this dimorphism via artificial selection on two populations to determine whether genetic variation exists within populations for flower size and the extent of the between-sex correlation, whether a flower size and number trade-off exists within each sex, and whether pollen and ovule production vary with flower size. We selected for decreased flower size (calyx width) in females and increased flower size in males and measured the response to selection in size and correlated responses in flower dry mass, flower number, and pollen or ovule number per flower. Four bouts of selection in each of two selection programs were performed, for a total of three selection lines to decrease size, three to increase it, and two control lines. Flower size always significantly responded to selection and we always found a significant correlated response in the sex not under selection. Selection decreased but did not eliminate the sexual dimorphism in flower dry mass and number. A negative relationship between flower size and number within each sex was revealed. Whereas ovule number showed a significant correlated response to selection on flower size, pollen number did not. Our results indicate that although substantial additive genetic variation for flower size exists, the high between-sex genetic correlation would likely constrain flower size from becoming more sexually dimorphic. Furthermore, floral display within each sex is constrained by a flower size and number trade-off. Given this trade-off and lack of variation in pollen production with flower size, we suggest that sexual dimorphism evolved via sexual selection to increase flower number in males but not females.  相似文献   

7.
In hermaphroditic plants, female reproductive success often varies among different positions within an inflorescence.However, few studies have evaluated the relative importance of underlying causes such as pollen limitation, resource limitation or architectural effect, and few have compared male allocation. During a 2-year investigation, we found that female reproductive success of an acropetally flowering species, Corydalis remota Fisch. ex Maxim. var. Iineariloba Maxim. was significantly lower in the upper late developing flowers when compared with the lower early flowers. Supplementation with outcross pollen did not improve female reproductive success of the upper flowers, while removal of the lower developing fruits significantly increased female reproductive success of the upper flowers in both years, evidencing resource limitation of the upper flowers. Female production in upper flowers was greatly improved by simultaneous pollen supplementation of the upper flowers and removal of the lower fruits, suggesting that, when resources are abundant, pollen may limit the female reproductive success of the upper flowers. The less seed mass in the upper flowers didn't increase in all treatments due to architecture. In the upper flowers, ovule production was significantly lower and the pollen : ovule ratio was significantly higher. These results suggest that male-biased sex allocation in the upper flowers may lead to increased male reproductive success, whereas the lower flowers have higher female reproductive success.  相似文献   

8.
Sex Allocation in a Long-Lived Monocarpic Plant   总被引:2,自引:0,他引:2  
  相似文献   

9.
徐旭剑  孙杉  操国兴 《广西植物》2017,37(3):335-341
两性花植物花序内的性分配常存在差异,资源竞争、结构效应、交配环境(雌雄异熟、传粉者定向访花行为等)或授粉不均匀等几种假说可以解释这种现象。为验证上述假说,该研究以云南草寇两种表型(雄先熟型和雌先熟型)为材料,分析了其花序内不同部位(基部、中部和顶部)的每花花粉数、胚珠数、花粉/胚珠比、结实率和结籽率,花序内传粉者的定向访花行为,以及人工辅助授粉和去花处理对结实率和结籽率的影响。结果表明:两种表型花序内每花花粉数不随部位而变化,每花胚珠数、结实率和结籽率由基部到顶部依次降低,每花花粉/胚珠比由基部到顶部依次增加,表明顶部花存在偏雄的性分配。人工辅助授粉后,结实率、结籽率仍由基部到顶部依次降低,表明授粉不均匀假说不能解释云南草寇花序内不同部位结实率、结籽率的差异。去除基部和中部花后,顶部花人工辅助授粉条件下的结实率、结籽率与基部花人工辅助授粉条件下的结实率、结籽率无差异,表明云南草寇花序内不同部位结实率、结籽率的差异主要由资源竞争引起。雌先熟表型每花花粉数、花粉/胚珠比高于雄先熟表型,表明两种表型存在性分配差异。传粉者主要先访问云南草寇基部的花,然后向顶部移动。云南草寇花序内顶部偏雄的性分配可能是由资源竞争和传粉者定向访花造成的。  相似文献   

10.
Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial–temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of Geranium pratense, a plant with temporal floral closure. This species uses stamen group-by-group movement and therefore anther-stigma spatial–temporal separation. Spatial separation (two whorls of stamen and pistil length) was shown to be stronger than temporal separation. We found that stamen movements to the center of the flower increase pollen removal, and the most common pollinators visited more frequently and for longer durations during the male floral stage than during the female floral stage. Petal movements increased both self-pollen deposition rate and sexual interference in G. pratense. The fruit and seed set of naturally and outcrossed pollinated flowers were more prolific than those of self-pollinated flowers. Group-by-group stamen movement, dehiscence of stamens, pistil movement, and male-female spatial–temporal functional separation of G. pratense before floral temporal closure may prevent male-female and stamen-stamen interference and pollen discounting, and may increase pollen removal and cross-pollination.  相似文献   

11.
经典的虫媒传粉植物个体大小依赖的性别分配模型通常预期:分配给雌性功能的资源比例将随着个体大小的增大而增加;但一些研究表明,花期个体大小依赖的性别分配模式表现出随个体大小增大而偏雄的趋势.我们以植株高度衡量个体大小,从花和花序两个水平上研究了雌花、两性花同株植物三脉紫菀(Aster ageratoides)花期个体大小依赖的性别分配策略.随着植株高度的增大,植株产生的头状花序数量增加,表明三脉紫菀投入到繁殖的资源不是固定不变的,而是随个体大小增大而增加的.在花和花序水平上,繁殖资源在雌雄性别功能之间的分配均表现为随个体大小的增大而更偏雄的模式,即花粉/胚珠比增加,产生花粉的两性花占两性花和雌花总花数的比例升高.这些结果与花期个体越大、性别分配越偏雄的预期一致.花期更偏雄的性别分配可能有助于植物在花期通过输出花粉提高雄性适合度,从而实现个体适合度的最大化.  相似文献   

12.
Multiple field populations of two pairs of diploid sister taxa with contrasting mating systems in the genus Clarkia (Onagraceae) were surveyed to test predictions concerning the effects of resource status, estimated as plant size, on pollen and ovule production and on the pollen:ovule (P:O) ratio of flowers. Most theoretical models of size-dependent sex allocation predict that, in outcrossing populations, larger plants should allocate more resources to female function. Lower P:O ratios in larger plants compared to smaller plants have been interpreted as supporting this prediction. In contrast, we predicted that P:O ratio should not vary with plant size in predominantly selfing plants, in which each flower contributes to reproductive success equally through male and female function. We found that, in all four taxa, both ovule and pollen production per flower usually increased significantly with plant size and that the shape of this relationship was decelerating. However, ovule production either decelerated more rapidly than or at the same rate as pollen production with plant size. Consequently,the P:O ratio increased or had no relationship with plant size. This relationship was population-specific (not taxon-specific) and independent of the mating system. Possible explanations for the increasing maleness with plant size are discussed.  相似文献   

13.
I describe patterns of sex allocation and gamete packaging in the andromonoecious lily Zigadenus paniculatus. In this species, pistil length was continuously, but bimodally, distributed within plants, and smaller pistils contained fewer mature ovules. In hermaphrodite flowers, ovule number per flower increased with blooming rank in small plants but decreased with blooming rank in large plants. Flowers with pistils less than three-fourths stamen length almost never produced fruits and were classified as males. The pedicel, tepals, stamens, and pistil of hermaphrodite flowers were all heavier than those of males. Hermaphrodite flowers were concentrated on the terminal raceme, males on the lower racemes. In combination with acropetal blooming, this spatial separation of flower types resulted in a seasonal decline in the proportion of open flowers that were hermaphrodite. However, individual flowers were protandrous, so that the population sex ratio, initially strongly male-biased, declined as the season progressed. Hand pollinations showed that plants were self-incompatible. Inflorescence size was positively correlated with bulb size, and plants with large inflorescences had a higher proportion of male flowers. Nutrient supplementation had no effect on inflorescence size, but increased the proportion of hermaphrodite flowers. Nutrient-supplemented plants also began blooming earlier than controls. I discuss these patterns in relation to the adaptive significance of andromonoecious breeding systems.  相似文献   

14.
两性花植物同步大量开花增加了个体花展示大小,能吸引更多的传粉者,使植株获得更多的交配机会,但也不可避免地带来不同程度的同株异花授粉,进而对被子植物的性资源分配、花部性状以及雌雄异株的进化等产生重要的影响.本文以姜科红姜花(Hedychium coccineum)为研究对象,通过人工授粉和操控试验、传粉动物的观察、自然结果率和自然居群的大小和密度的调查,探讨红姜花同步大量开花的适应意义.结果表明:(1)红姜花的穗状花序由57.33±1.68(n=30)个蝎尾状聚伞小花序组成,每个小花序具3.8±0.15(n=30)朵花,同花序上所有的小花序同步开花,不同小花序内的花按轮次同步开放,使花序在整个开花期间保持有数十朵花同时开放,花序水平上的花展示极为显著;(2)红姜花为自交亲和植物,但不存在自动自花授粉,自然居群存在严重的传粉者限制,其结实也存在着资源限制;(3)多型蓝凤蝶(Papilio memnon)、小矩翅粉蝶(Dercas lycorias)和黑角尖翅粉蝶云南亚种(Appias indra aristoxemus)是红姜花的有效传粉者,3种蝴蝶对红姜花不同大小花序的访问频率都显著不同,随着花序花展示大小的增加其访问频率也显著增加;(4)红姜花同一个体小花序内不同轮次花之间的胚珠数随轮次显著减少,而花粉数前3轮随轮次显著增加.胚珠数的递减及结实存在着资源限制,说明红姜花一个花序开大量的花并不是为了增加结实,而花粉数前3轮的递增,有利于花粉的分散输出,提高个体的雄性适合度.  相似文献   

15.
Aims Floral longevity, the duration that a flower remains open and functional, varies greatly among species. Variation in floral longevity has been considered to be optimal strategy for resource allocation under different ecological conditions, mainly determined by the rates of pollination and cost of flower maintenance. However, it is unclear whether an intrinsic factor, floral sexual investment, constrains evolution of floral longevity. The theoretical model also predicts that dichogamy favors long-lived flowers, but empirical studies to test this prediction remain unexplored.Methods To examine the effect of floral sexual investment on floral longevity, we measured flower size together with pollen and ovule production in 37 sympatric flowering plants in a natural community. The duration of the female and male phase in 21 protandrous species and floral longevity of the other 16 adichogamous species were documented in the field.Important findings Floral longevity varied from 1 day to 15 days, while pollen number per flower varied from 643 to 710880 and ovule number per flower from 1 to 426 in the 37 species. Flower size was correlated with pollen production as well as ovule production. Floral longevity was positively related to pollen production but not to ovule production. Consistent with the prediction that dichogamy favors long-lived flowers, we found the floral longevity of protandrous species was significantly longer than that of adichogamous species. In the protandrous species, pollen production per flower was observed to be positively related to male duration, while ovule production was not related to female duration. Our analyses of variation in floral longevity and sexual investment among different species suggest that the floral sexual investment could be an intrinsic factor contributing to the selected floral longevity, particularly the male phase, and that high pollen production could potentially increase pollen removal, i.e. male productive success.  相似文献   

16.
The adaptive significance and mechanism of patterns in floral sex allocation and female success within inflorescences has attracted attention recently, whereas few studies have examined genetic variation of intra-inflorescence pattern. The purpose of this study is to investigate patterns of reproduction within racemes in protandrous Aconitum gymnandrum Maxim., and illuminate potential mechanisms and genetic variation of such patterns. Data from pot experiment on 40 maternal families were collected in field. Anther number, pollen:ovule ratio and seed germination rate increased from bottom to top flowers within racemes, but other traits, such as gynoecium mass, carpel number, sepal galea height and seed production decreased significantly with flowering sequence. Variation in floral sex allocation within racemes in A. gymnandrum fitted entirely the prediction of protandry, which was not a result of architectural effect. Such selected pattern may result from a variety of factors influencing the mating environment, such as pollinator directionality, display size and flower longevity. Decline of female success within racemes in A. gymnandrum also resulted from male-biased allocation selected by variation in the mating environment, not resource competition or pollen limitation. Moreover, there was genetic variation for most reproductive traits and the position effect, as evinced by significant variation among families.  相似文献   

17.
Buide ML 《Annals of botany》2006,97(2):289-297
BACKGROUND AND AIMS: The floral display influences the composition of pollinators interacting with a plant species. Geographic and temporal variation in pollinator composition complicates the understanding of the evolutionary consequences of floral display variation. This paper analyses the relationships between Silene acutifolia, a hermaphroditic perennial herb, and its pollinators, based on field studies in the north-west of Spain. METHODS: Studies were conducted over three years (1997-1999). Firstly, the main pollinators of this species were determined for two years in one population. Secondly, pollen limitation in fruit and seed production was analysed by supplementary hand pollinations, and counting the pollen grains and tubes growing in styles for two different-sized populations. Finally, the effect of flower size and number on the rate of visitation and total seed number was examined for 15 marked plants. RESULTS AND CONCLUSIONS: The primary pollinators were long-tongued insects, including Hymenoptera, Lepidoptera and Diptera, but the composition and visitation frequencies differed between years. Pollen limitation occurred in one of the years of study. There was between-population variation in the number of pollen grains and pollen tubes found in styles, suggesting pollen limitation in one population. Overall, pollinators visited plants with more open flowers more frequently, and pollinated more flowers within these plants. Conversely, petal and calyx sizes had no effect on insect visitation. Plants with higher rates of visits produced higher number of seeds, suggesting that pollinator-mediated limitation of seed and fruit production may be important in some years.  相似文献   

18.
The size-dependent sex allocation model predicts that the relative resource allocation to female function often increases with plant size in animal-pollinated plants. If size effects on reproductive success vary depending on the environmental conditions, however, the size dependency may differ among populations. We tried to detect site-specific variation in size-dependent sex allocation of a monocarpic hermaphrodite with reference to light availability. Multiple flowers and fruits were sampled from the individuals of Cardiocrinum cordatum, a monocarpic understory herb, and pollen, ovule and seed production were measured with reference to the plant size in two populations. Furthermore, frequency and foraging behavior of pollinator visitation was observed. Ovule production per flower increased with plant size in both populations, while pollen production per flower increased with size only in the population under sparse canopy. Therefore, proportional allocation to male function decreased with plant size in the population under closed canopy, but did not change in the population under sparse canopy. Pollinators usually visited only one flower per plant, indicating the negligible geitonogamous pollination in this species. Although seed production under closed canopy was lower than that under sparse canopy, seed-set rate per flower and seed mass per fruit were independent of plant size in either of the populations. Size-dependent sex allocation in this species was site-specific, suggesting that not only resource storage before reproduction (i.e., plant size) but also resource availability of environment throughout the reproductive process (i.e., light availability) affect reproductive performance in this species.  相似文献   

19.

Background and Aims

Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities.

Methods

A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender.

Key Results

Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness.

Conclusions

The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness.  相似文献   

20.
Plants need not participate passively in their own mating, despite their immobility and reliance on pollen vectors. Instead, plants may respond to their recent pollination experience by adjusting the number of flowers that they display simultaneously. Such responsiveness could arise from the dependence of floral display size on the longevity of individual flowers, which varies with pollination rate in many plant species. By hand-pollinating some inflorescences, but not others, we demonstrate plasticity in display size of the orchid Satyrium longicauda. Pollination induced flower wilting, but did not affect the opening of new flowers, so that within a few days pollinated inflorescences displayed fewer flowers than unpollinated inflorescences. During subsequent exposure to intensive natural pollination, pollen removal and receipt increased proportionally with increasing display size, whereas pollen-removal failure and self-pollination accelerated. Such benefit-cost relations allow plants that adjust display size in response to the prevailing pollination rate to increase their attractiveness when pollinators are rare (large displays), or to limit mating costs when pollinators are abundant (small displays). Seen from this perspective, pollination-induced flower wilting serves the entire plant by allowing it to display the number of flowers that is appropriate for the current pollination environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号