首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
The flora of Macaronesia, which encompasses five Atlantic archipelagos (Azores, Canaries, Madeira, Cape Verde, and Salvage), is exceptionally rich and diverse. Spectacular radiation of numerous endemic plant groups has made the Macaronesian islands an outstanding area for studies of evolution and speciation. Despite intensive investigation in the last 15 years, absolute age and rate of diversification are poorly known for the flora of Macaronesia. Here we report molecular divergence estimates and rates of diversification for five representative, putative rapid radiations of monophyletic endemic plant lineages across the core eudicot clade of flowering plants. Three discrete windows of colonization during the Miocene and early Pliocene are suggested for these lineages, all of which are inferred to have had a single colonization event followed by rapid radiation. Subsequent inter-archipelago dispersal events into Madeira and the Cape Verdes took place very recently during the late Pliocene and Pleistocene after initial diversification on the Canary Islands. The tempo of adaptive radiations differs among the groups, but is relatively rapid compared to continental and other island radiations. Our results demonstrate that opportunity for island colonization and successful radiation may have been constrained to discrete time periods of profound climatic and geological changes in northern African and the Mediterranean.  相似文献   

4.
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.  相似文献   

5.
Sideritis L. (Lamiaceae) comprises approximately 150 species of annuals and perennials distributed chiefly in the Mediterranean region. The majority of the species belong to the continental subgenus Sideritis which is divided into two perennial (Sideritis and Empedoclea) and two annual (Hesiodia and Burgsdorfia) sections. Twenty-three species are woody perennials endemic to the Macaronesian archipelagos of Madeira and the Canary Islands. In an effort to determine the continental origin of the insular group, we constructed independent phylogenies comprising sequence data from both chloroplast and nuclear markers. Sampling included 7 island taxa drawn from the Macaronesian subgenus Marrubiastrum and 25 continental taxa representing all four sections of subgenus Sideritis. Subgenus Marrubiastrum and the two continental perennial sections form well-supported monophyletic groups in both individual and combined analyses. The annual sections are not monophyletic in any analysis; further sampling of annual taxa is needed to resolve these relationships. All analyses identified Sideritis cossoniana, an annual species from Morocco, as the closest continental relative of the Macaronesian group. This contrasts with the hypothesis of earlier workers who suggested that the insular taxa were most closely related to eastern Mediterranean species of the genus. The phylogenies also demonstrate a distinct increase in woodiness among the Macaronesian species relative to their continental congeners, providing further support for the secondary nature of woodiness in island plants.  相似文献   

6.
Isolated oceanic archipelagos are excellent model systems to study speciation, biogeography, and evolutionary factors underlying the generation of biological diversity. Despite the wealth of studies documenting insular speciation, few of them focused on marine organisms. Here, we reconstruct phylogenetic relationships among species of the marine venomous gastropod genus Conus from the Cape Verde archipelago. This small island chain located in the Central Atlantic hosts 10% of the worldwide species diversity of Conus. Analyses were based on mtDNA sequences, and a novel nuclear marker, a megalin-like protein, member of the low-density lipoprotein receptor gene family. The inferred phylogeny recovered two well-defined clades within Conus. One includes Cape Verde endemic species with larger shells, known as the "venulatus" complex together with C. pulcher from the Canary Islands. The other is composed of Cape Verde endemic and West Africa and Canary Island "small" shelled species. In both clades, nonendemic Conus were resolved as sister groups of the Cape Verde endemics, respectively. Our results indicate that the ancestors of "small" and "large" shelled lineages independently colonized Cape Verde. The resulting biogeographical pattern shows the grouping of most Cape Verde endemics in monophyletic island assemblages. Statistical tests supported a recent radiation event within the "small shell" clade. Using a molecular clock, we estimated that the colonization of the islands by the "small" shelled species occurred relatively close to the origin of the islands whereas the arrival of "large" shelled Conus is more recent. Our results suggest that the main factor responsible for species diversity in the archipelago may be allopatric speciation promoted by the reduced dispersal capacity of nonplanktonic lecithotrophic larvae.  相似文献   

7.
Morphological systematics makes it clear that many non-volant animal groups have undergone extensive transmarine dispersal with subsequent radiation in new, often island, areas. However, details of such events are often lacking. Here we use partial DNA sequences derived from the mitochondrial cytochrome b and 12S rRNA genes (up to 684 and 320 bp, respectively) to trace migration and speciation in Tarentola geckos, a primarily North African clade which has invaded many of the warmer islands in the North Atlantic Ocean. There were four main invasions of archipelagos presumably by rafting. (i) The subgenus Neotarentola reached Cuba up to 23 million years (Myr) ago, apparently via the North Equatorial current, a journey of at least 6000 km. (ii) The subgenus Tarentola invaded the eastern Canary Islands relatively recently covering a minimum of 120 km. (iii) The subgenus Makariogecko got to Gran Canaria and the western Canary Islands 7-17.5 Myr ago, either directly from the mainland or via the Selvages or the archipelago of Madeira, an excursion of 200-1200 km. (iv) A single species of Makariogecko from Gomera or Tenerife in the western Canaries made the 1400 km journey to the Cape Verde Islands tip to 7 Myr ago by way of the south-running Canary current. Many journeys have also occurred within archipelagos, a minimum of five taking place in the Canaries and perhaps 16 in the Cape Verde Islands. Occupation of the Cape Verde archipelago first involved an island in the northern group, perhaps São Nicolau, with subsequent spread to its close neighbours. The eastern and southern islands were colonized from these northern islands, at least two invasions widely separated in time being involved. While there are just three allopatric species of Makariogecko in the Canaries, the single invader of the Cape Verde Islands radiated into five, most of the islands being inhabited by two of these which differ in size. While size difference may possibly be a product of character displacement in the northern islands, taxa of different sizes reached the southern islands independently.  相似文献   

8.
Aim The angiosperm genus Cryptotaenia (family Apiaceae, tribe Oenantheae) exhibits an anomalous distribution pattern, with five of its eight species being narrow endemics geographically isolated from their presumed relatives. We examined the monophyly of the genus and ascertained the phylogenetic placements of its constituent members in order to explain their distribution patterns. Location Eastern North America, eastern Asia, the Caucasus, southern Italy, Macaronesia and Africa. Methods In total, 173 accessions were examined for nuclear rDNA ITS sequence variation, representing nearly all major lineages of Apiaceae subfamily Apioideae and seven species of Cryptotaenia. Sampling of tribes Oenantheae, Scandiceae and Pimpinelleae was comprehensive. Phylogenetic analyses included Bayesian, maximum parsimony and neighbour‐joining methods; biogeographical scenarios were inferred using dispersal–vicariance analysis (diva ). Results Cryptotaenia is polyphyletic and includes three distant lineages. (1) Cryptotaenia sensu stricto (C. canadensis, C. japonica, C. flahaultii and C. thomasii) is maintained within tribe Oenantheae; C. canadensis and C. japonica, representing an eastern North American–eastern Asian disjunction pattern, are confirmed to be sister species. (2) Cryptotaenia elegans, endemic to the Canary Islands, is placed within Scandiceae subtribe Daucinae along with two woody endemics of Madeira, Monizia edulis and Melanoselinum decipiens. The phylogeny of these Canarian and Madeiran endemics is unresolved. Either they constitute a monophyletic sister group to a clade comprising some Mediterranean and African species of Daucus and their relatives, or they are paraphyletic to this clade. The herbaceous/woody genus Tornabenea from Cape Verde, once included in Melanoselinum, is not closely related to the other Macaronesian endemics but to Daucus carota. (3) The African members of Cryptotaenia (C. africana, C. calycina and possibly C. polygama) comprise a clade with some African and Madagascan umbellifers; this entire clade is sister group to Eurasian Pimpinella. Main conclusions Elucidating the phylogeny of the biogeographically anomalous Cryptotaenia sensu lato enabled hypotheses on the biogeography of its constituent lineages. Cryptotaenia sensu stricto exhibits a holarctic distribution pattern, with its members occurring in regions that were important glacial refugia. The genus probably originated in eastern Asia and from there dispersed to Europe and North America. For the Macaronesian endemic species –C. elegans, M. edulis and M. decipiens–diva reconstructs either a single dispersal event to Macaronesia from the Mediterranean/African region, or a single dispersal followed by a back‐dispersal to the mainland. The radiation of Tornabenea from Cape Verde followed a second dispersal of Daucinae to Macaronesia. Woodiness in Melanoselinum/Monizia and Tornabenea, therefore, is a derived and independently acquired trait. The African members of Cryptotaenia are derived from an ancestor arriving from the Middle East.  相似文献   

9.
《Journal of bryology》2013,35(1):119-125
Abstract

The genus Thamnobryum is reviewed from Macaronesia (excludingthe Cape Verde Islands). In this area there are three species, T. alopecurum (Hedw.) Gang., T. maderense (Kindb.) Hedenäs, comb. nov. and T. fernandesii C. Sérgio. T. fernandesii is only known from Madeira; the other two also occur on the Canary Islands and the Azores. Thamnobryum canariense (Ren. & Card.) Long is transferred to Isothecium, as I. atlanticum Hedenäs, comb. et nom. nov.  相似文献   

10.
Macaronesia covers four Atlantic archipelagos: the Azores, Madeira, the Canary Islands, and the Cape Verde islands. When discovered by Europeans in the 15th century, only the Canaries were inhabited. Historical reports highlight the impact of Iberians on settlement in Macaronesia. Although important differences in their settlement are documented, its influence on their genetic structures and relationships has yet to be ascertained. In this study, the hypervariable region I (HVRI) sequence and coding region polymorphisms of mitochondrial DNA (mtDNA) in 623 individuals from the Azores (120) and Canary Islands (503) were analyzed. Combined with published data, these give a total of 1,542 haplotypes from Macaronesia and 1,067 from the Iberian Peninsula. The results obtained indicate that Cape Verde is the most distinctive archipelago, with an mtDNA pool composed almost exclusively of African lineages. However, the other archipelagos present an mtDNA profile dominated by the presence of West‐Eurasian mtDNA haplogroups with African lineages present in varying proportions. Moreover, no signs of integration of typical Canarian U6 lineages in the other archipelagos were detected. The four Macaronesia archipelagos currently have differentiated genetic profiles, and the Azores present the highest intra‐archipelago differentiation and the lowest values of diversity. The analyses performed show that the present‐day genetic profile of the Macaronesian archipelagos was mainly determined by the initial process of settlement and further microdifferentiation probably as a consequence of the small population size of some islands. Moreover, contacts between archipelagos seem to have had a low impact on the mtDNA genetic pool of each archipelago. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Abstract A molecular phylogenetic study of Bystropogon L'Her. (Lamiaceae) is presented. We performed a cladistic analysis of nucleotide sequences of the internal transcribed spacers (ITS), of the nuclear ribosomal DNA, and of the trnL gene and trnL-trnF intergenic spacer of the chloroplast DNA. Bystropogon odoratissimus is the only species endemic to the Canary Islands that occurs in the three palaeo-islands of Tenerife. This species is not part of an early diverging lineage of Bystropogon and we suggest that it has a recent origin. This phylogenetic pattern is followed by most of the species endemic to the palaeo-islands of Tenerife. The two sections currently recognized in Bystropogon form two monophyletic groups. Taxa belonging to the section Bystropogon clade show interisland colonization limited to the Canary Islands with ecological shifts among three ecological zones. Taxa from the section Canariense clade show interisland colonization both within the Canary Islands and between the Canary Islands and Madeira. Speciation events within this clade are mostly limited to the laurel forest. The genus has followed a colonization route from the Canaries towards Madeira. This route has also been followed by at least five other plant genera with species endemic to Macaronesia. Major incongruences were found between the current infrasectional classification and the molecular phylogeny, because the varieties of Bystropogon origanifolius and Bystropogon canariensis do not form two monophyletic groups. The widespread B. origanifolius appears as progenitor of the other species in section Bystropogon with a more restricted distribution.  相似文献   

12.
Plant colonization of the North Atlantic raises the intriguing question of the relationships between extant island species with their continental counterparts (European, African, and American), which may provide clues to past geographic distribution and colonization history. It has been suggested that during past glaciations, many plant species with typical Mediterranean distributions survived in the Atlantic islands that belong to what is today known as Macronesia. We used random amplified polymorphic DNA (RAPD) markers to study 12 populations of the liverwort Porella canariensis partly covering its present-day distribution (Azores, Madeira, Canary and Cape Verde Islands, and Iberian Peninsula). Unweighted pair-group (UPGMA) and principal component (PCO) analyses showed a similar geographical pattern that suggested a close relationship between Iberian populations and those from the Canaries and Cape Verde Islands. Populations from Madeira had more genetic variation than those from the Azores, a result from either a richer diversity of habitats in Madeira, which prompted more population diversification, successive colonization waves from different origins, or an older colonization of Madeira. The data show that continuous patches of liverworts are often comprised of more than one individual. Finally, RAPDs can be used to investigate intraspecific diversity within a comparatively large geographic area and, with utmost care, can be used to infer a historic context to explain the patterns observed.  相似文献   

13.
The Cape Verde kite (Milvus milvus fasciicauda) is considered to be one of the rarest birds of prey in the world and at significant risk of extinction. For this reason there is great interest in both the taxonomic and the population status of this group. To help resolve its taxonomic status, we provide phylogenetic analyses based on three mitochondrial genes for a sampling of kites in the genus Milvus, including a broad geographical sampling of black kites (Milvus migrans), red kites (Milvus milvus), Cape Verde kite museum specimens collected between 1897 and 1924, and five kites trapped on the Cape Verde Islands during August 2002. We found that the historical Cape Verde kites, including the type specimen, were non-monophyletic and scattered within a larger red kite clade. The recently trapped kites from the Cape Verde Islands were all phylogenetically diagnosed as black kites. Our findings suggest that the traditional Cape Verde kite is not a distinctive evolutionary unit, and the case for species status, as recently suggested by others, is not supported. We do find support for recognition of at least one clade of yellow-billed kites, traditionally considered as a black kite subspecies, as a distinctive phylogenetic species.  相似文献   

14.
Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.  相似文献   

15.
The volcanic archipelago of the Canary Islands, 100 km off the northwestern coast of Africa, harbors 43 endemic species of the mostly circum-Mediterranean spider genus Dysdera (Araneae, Dysderidae). This amounts to approximately one-fourth of all known Dysdera species in an area that represents 0.1% of the range of the genus. In order to address the origin of this extraordinary number of endemic species, the phylogenetic relationships among all the endemic taxa and a sample of 27 continental species were reconstructed. A simultaneous cladistic analysis was performed on 66 morphological characters, 471 bp of the cytochrome oxidase I and 424 bp of the 16S rRNA mitochondrial genes. The preferred most parsimonious tree supports a single origin for most of the endemic species (84%), although this tree is ambiguous regarding the total number of overseas colonizations (allowing a minimum of two and a maximum of four colonization events). Our data suggest that the Canary Islands have been the source of the colonizers of some of the remaining Macaronesian archipelagoes (certainly for the Selvagem Islands and the Cape Verdes and possibly for Madeira); the Azores have been independently colonized by dysderids from the continent. The present study provides a phylogenetic framework for an exceptional case of insular species radiation, an essential tool for unraveling the factors that have promoted this amazing diversification. Species radiations in oceanic archipelagoes are excellent models for the study of speciation processes.  相似文献   

16.
The seaweed Cladophoropsis membranacea (Hofman Bang ex. C. Agardh) Børgesen is a widely distributed species on coral reefs and along rocky coastlines throughout the tropics and subtropics. In a recent population‐level survey openface>1600 individuals with eight microsatellite loci, a number of isolates from biogeographically disjunct locations could not be amplified for any of the loci. Nonamplifiable and amplifiable isolates co‐occurred within the Canary Islands, Cape Verde Islands, and in the Caribbean. These unexpected results led to question whether or not C. membranacea is a single species. Phylogenetic relationships were evaluated using rDNA ITS1 and ITS2 sequence comparisons from 42 isolates sampled from a subset of 30 of the 66 locations. Four well‐supported clades were identified. Sequence divergence within clades was <1%, whereas between‐clade divergence was 2%–3%. Intraindividual variation was extremely low with no effects on the analysis. A strong, but imperfect, correspondence was found between ITS clades and amplifiable microsatellite loci. It is concluded that C. membranacea consists of three cryptic species. Using Pacific isolates as an outgroup, the most basal clade included the Central Canary Islands, Cape Verde, and Bonaire (Caribbean) isolates and thus spanned the widest latitude. Two derived sister clades consisted of a southern transtropical group stretching across the SE Caribbean to the Cape Verde Islands and African coast (but not the Canary Islands) and a NE‐Canary Island‐Mediterranean clade that also included the Red Sea. The detection of overlapping biogeographic distributions highlights the importance of ecotypic differentiation with respect to temperature and the importance of shifting sea surface isotherms that have driven periodic extinctions and recolonizations of the Canary Islands—a crossroads of marine floral exchange—since the last glacial maximum.  相似文献   

17.
Feral cats Felis catus Linnaeus, 1758 have contributed to the extinction of numerous native species on islands, which are clearly sources of global biodiversity. We studied the diet of this introduced predator in the Madeira and Cape Verde archipelagos, which harbour important colonies of endangered seabirds in the high mountain habitats, and compared the results with those obtained in the same habitat in the Canary Islands, Macaronesian archipelago. On Madeira, 461 prey were identified from 143 scat groups. Mammals, overall mice, constituted the basic diet appearing in 95% of cat scats. On Fogo (Cape Verde), 657 prey items were obtained from 145 scats, and mammals were also the most important prey, reaching a frequency of occurrence of 88%. Although introduced mammals were the main prey category on all Macaronesian islands, we observed variation in feral cat diet among these islands. Birds were more frequently consumed on Madeira, lizards on Tenerife (Canaries) and invertebrates on Fogo. No specific differences were observed in relation to La Palma. We suggest that the diet composition on these islands varies according to the respective availability of the different prey types.  相似文献   

18.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

19.
Long-eared bats of the genus Plecotus are widespread and common over most of the western Palaearctic. Based on recent molecular evidence, they proved to represent a complex of several cryptic species, with three new species being described from Europe in 2002. Evolutionary relationships among the different lineages are still fragmentary because of the limited geographic coverage of previous studies. Here we analyze Plecotus mitochondrial DNA sequences from the entire Mediterranean region and Atlantic Islands. Phylogenetic reconstructions group these western Palaearctic Plecotus into two major clades which split at least 5 Myr ago and that are each subdivided into further subgroups. An 'auritus group' includes the traditional P. auritus species and its sister taxon P. macrobullaris (=P. alpinus) plus related specimens from the Middle East. P. auritus and P. macrobullaris have broadly overlapping distributions in Europe, although the latter is apparently more restricted to mountain ranges. The other major clade, the 'austriacus group,' includes the European species P. austriacus and at least two other related taxa from North Africa (including P. teneriffae from the Canary Islands), the Balkans and Anatolia (P. kolombatovici). The sister species of this 'austriacus group' is P. balensis, an Ethiopian endemic. Phylogenetic reconstructions further suggest that P. austriacus reached Madeira during its relatively recent westward expansion through Europe, while the Canary Islands were colonized by a North African ancestor. Although colonization of the two groups of Atlantic Islands by Plecotus bats followed very distinct routes, neither involved lineages from the 'auritus group.' Furthermore, the Strait of Gibraltar perfectly segregates the distinct lineages, which confirms its key role as a geographic barrier. This study also stresses the biogeographical importance of the Mediterranean region, and particularly of North Africa, in understanding the evolution of the western Palaearctic biotas.  相似文献   

20.
Recent phylogeographical analyses using mitochondrial DNA (mtDNA) sequences indicate that the Tarentola geckos from the Cape Verde archipelago originated from a propagule that dispersed from the Canary Islands approximately 7.7 Mya and that underwent a fast evolutionary radiation. Molecular analyses carried out to date clearly show some incongruences with the current taxonomy of Tarentola from the Cape Verde Islands, with some species being paraphyletic or polyphyletic, and several independently evolving lineages needing formal taxonomic recognition. The aim of this study was to clarify the systematics of this group to unravel its taxonomy by applying an integrative approach based on information from three independent sources: mtDNA, nuclear genes, and morphology. As a result of this taxonomic revision, two novel species for the islands of S. Nicolau and Fogo are described and eight subspecies are upgraded to species level. Moreover, an identification key for the genus Tarentola from the Cape Verde archipelago is presented. This study reconciles taxonomy and phylogeny in this group, provides a better understanding of diversity patterns, new insights on evolutionary hypotheses, and supports the basic framework for the future management and conservation of this unique reptile radiation. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 328–360.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号