首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory. 2. In spite of this, the mechanisms (e.g. differences in trophic ecology) by which hybrids co‐exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non‐native cyprinid fishes often outnumber both parental species. 3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats. 4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems.  相似文献   

2.
Many invasive taxa are hybrids, but how hybridization boosts the invasive process remains poorly known. We address this question in the clonal freshwater snail Melanoides tuberculata from Martinique, using three parental and two hybrid lines. We combine an extensive field survey (1990-2003) and a quantitative genetic experiment to show that hybrid lines have outcompeted their parents in natural habitats, and that this increased invasiveness co-occurred with pronounced shifts in life-history traits, such as growth, fecundity and juvenile size. Given the little time between hybrid creation and sampling, and the moderate standing genetic variance for life-history traits in hybrids, we show that some of the observed trait changes between parents and hybrids were unlikely to arise only by continuous selection. We therefore suggest that a large part of hybrid advantage stems from immediate heterosis upon hybridization.  相似文献   

3.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

4.
In recent decades, hybridization has become a focus of attention because of its role in evolutionary processes. However, little is known about changes in genetic structure within and between parental species and hybrids over time. Here, we studied processes of genetic change in parental species and hybrids from the Daphnia longispina complex (Crustacea, Cladocera) over a period of six years across ten habitats. These cyclical parthenogens respond to fluctuating environments by switching from asexual to sexual reproduction. Importantly, sexually produced diapausing eggs, which resist extreme conditions such as low temperatures and serve as dispersal stages, are produced to a lower extent by hybrids. Long‐term microsatellite data revealed clear differences between hybrids and parental species. In hybrids, clonal diversity values were lower, whereas heterozygosity and linkage disequilibrium values were higher compared to parental species. Clonal diversity of hybrids responded to the strength of the winter, with cold winters resulting in few genotypes in the following spring. In time windows when only asexual hybrid females survive, priority effects will favour the establishment of the hybrid offspring before hatchlings from parental diapause eggs can enter the community. The constant high levels of heterozygosity maintained by clonal reproduction in hybrids might lead to their successful establishment over time, when they are able to escape competition from both parental species. Although we found evidence that hybrids diversity depends on fluctuating environments, a direct link between hybrid abundance and the strength of winter was missing. Because of reduced adaptability in clonally reproducing hybrids, multiple factors must contribute to promoting their long‐term success in fluctuating environments.  相似文献   

5.
Studies of natural hybridization have suggested that it may be a creative stimulus for adaptive evolution and speciation. An important step in this process is the establishment of fit recombinant genotypes that are buffered from subsequent recombination with unlike genotypes. We used molecular markers and a two-generation sampling strategy to infer the extent of recombination in a Louisiana iris hybrid zone consisting predominantly of Iris fulva-type floral phenotypes. Genotypic diversity was fairly high, indicating that sexual reproduction is frequent relative to clonal reproduction. However, we observed strong spatial genetic structure even after controlling for clonality, which implies a low level of pollen and seed dispersal. We therefore used cluster analysis to explore the hypothesis that the fulva-type hybrids are an admixture of groups between which there has been limited recombination. Our results indicate that several such groups are present in the population and are strongly localized spatially. This spatial pattern is not attributable strictly to a lack of mating opportunities between dissimilar genotypes for two reasons: (1) relatedness of flowering pairs was uncorrelated with the degree of overlap in flowering, and (2) paternity analysis shows that pollen movement among the outcross fraction occurred over large distances, with roughly half of all paternity attributed to pollen flow from outside the population. We also found evidence of strong inbreeding depression, indicated by contrasting estimates of the rate of self-fertilization and the average inbreeding coefficient of fulva-type hybrids. We conclude that groups of similar hybrid genotypes can be buffered from recombination at small spatial scales relative to pollen flow, and selection against certain recombinant genotypes may be as important as or more important than clonal reproduction and inbreeding.  相似文献   

6.
The scarcity of parthenogenetic vertebrates is often attributed to their ‘inferior’ mode of clonal reproduction, which restricts them to self‐reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north‐western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype – which is the usual pattern in parthenogens. In north‐western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n‐3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.  相似文献   

7.
Phyto- and necromass above and below ground in a fen   总被引:3,自引:0,他引:3  
Hugo Sjörs 《Ecography》1991,14(3):208-218
Few investigations deal with the subterranean phytomass in fens (minerotrophic peatlands), their results differing widely. This study was carried out in a "rich fen" in central Sweden, and involved excavation of peat monoliths, depth-sectioning and hand-sorting as to species, type of organ, and living or dead condition. The below-ground living phytomass was large, over 4 kg m−2 in each of two sample plots, being no <97–96% in the dominants, Carex limosa and C. lasiocarpa , 89% on average in Menyanthes trifoliata , and c. 93% for all species. Carex limosa had its rhizome maximum slightly higher than C. lasiocarpa , but a greater part of its roots penetrated deeper. For Menyanthes , also net annual production above and below ground was estimated. The subterranean phytomass decreased with depth, but living roots were found even at 42 cm. The recognizable necromass did not decrease with depth. These recent constituents would render a very unequal age to the peat. The imbalance between the small green aerial phytomass and the much greater subterranean phytomass was emphasized. It could be related to a relatively very great translocation of photosynthates from above to below ground, and/or to longevity of below-ground organs, the latter at least in Menyanthes.  相似文献   

8.
We found the hybrid zone between Eucalyptus amygdalina and Eucalyptus risdonii to be a center of insect and fungal species richness and abundance. Of 40 taxa examined, 73% were significantly more abundant in the hybrid zone than in pure zones, 25% showed on significant differences, and 2% were most abundant on a pure host species. The average hybrid tree supported 53% more insect and fungal species, and relative abundances were, on average, 4 times greater on hybrids than on either eucalypt species growing in pure stands. Hybrids may act as refugia for rare species: 5 of 40 species were largely restricted to the hybrid zone. Also, 50% of the species coexisted only in the hybrid zone, making for mique species assemblages. Although hybrids support more species and greater abundances, all hybrids are not equal: 68% of the 40 taxa examined were significantly more abundant on one hybrid phenotype than another. While herbivore concentrations on F1 type intermediates were rare, concentrations were common on phenotypes resembling backcrosses either to E. amygdalina or E. risdonii. For specialist herbivores, the hybrid phenotype most heavily utilized appears to be determined by its phenotypic affinity to its host species. Generalists exhibit an overall greater abundance on hybrids, but are less likely to utilize one hybrid phenotype over another. Mechanistic explanations for these distributions are numerous and probably species specific, but are likely to include: increased genetic susceptibility of hybrids due to hybrid breakdown; increased stress in the hybrid zone resulting in greater plant susceptibility; and a greater diversity of resources in the hybrid zone which could support more species. Seed capsule production by hybrids and their parental species is negatively correlated with herbivory. However, it is difficult to determine whether herbivores cause this pattern as hybrids may have inherently lower sexual reproduction. Laws enacted to protect rare and endangered species do not include hybrids. We argue that a re-examination of our current hybrid policy is warranted. Plant hybrid zones are centers of plant evolution and speciation, sources of economically important plants and potential biocontrol agents, and, as our study suggests, also provide essential habitats for phytophagous communities.  相似文献   

9.
Asymmetrical introgression is an expected genetic consequence of hybridization when parental taxa differ in abundance; however, evidence for such effects in small populations is scarce. To test this prediction, we estimated the magnitude and direction of hybridization between red mulberry (Morus rubra L.), an endangered species in Canada, and the introduced and more abundant white mulberry (Morus alba L.) using nuclear (randomly amplified polymorphic DNA) and cytoplasmic (chloroplast DNA sequence) markers. Parentage of 184 trees (n = 42 using cpDNA) from four sympatric populations was estimated using a hybrid index and related to six morphological characters and population frequencies of the parental classes. Overall, the frequency of nuclear hybrids was 53.7% (n = 99) and ranged from 43% to 67% among populations. The parental and hybrid taxa differed with respect to all of the morphological traits. Sixty-seven percent of all hybrids contained more nuclear markers from M. alba than M. rubra (hybrid index x = 0.46); among populations, the degree of M. alba bias was correlated with the frequency of M. alba. In addition, the majority of hybrids (68%) contained the chloroplast genome of white mulberry. These results suggest that introgression is bidirectional but asymmetrical and is related, in part, to the relative frequency of parental taxa.  相似文献   

10.
Hybridization is common among cyclical parthenogens, especially in zooplankton species assemblages of the genus Daphnia. To explore hybridization dynamics and the extent of clonal diversity in the Daphnia longispina complex, we analysed population structure in eight permanent lakes. Based on 15 microsatellite loci, three major taxonomic units emerged: two species, D. galeata and D. longispina and their F1 hybrids, supported by factorial correspondence analysis and two Bayesian methods. At the same time, the detection of backcross classes differed between methods. Mean clonal diversity was lowest in the F1 hybrids, as expected from the high rate of asexual reproduction. Within taxa, replicated genotypes were of clonal origin, but clonal lineages persisted in subsequent years in only one of three resampled lakes. In another lake, the taxon composition changed from being dominated by hybrids to complete dominance by one parental taxon. Such a year‐to‐year taxon replacement has not been reported for the D. longispina complex before. Our data on this hybrid complex illustrate that high‐resolution genotyping is essential for the understanding of ecological and evolutionary outcomes of hybridization in partially clonal taxa.  相似文献   

11.
Fallopia japonica (Japanese knotweed, Polygonaceae) is a well-known East Asian perennial that is established throughout the U.S. and Europe. Another congener, F. sachalinensis, and their hybrid, F. ×bohemica, also persist on both continents. Their invasive success is primarily attributed to their ability to spread via clonal growth. However, mounting evidence suggests invasion history and dynamics differ between continents and that sexual reproduction is more common than previously assumed. We used published morphological traits designed to distinguish the three taxa to characterize their distribution in 24 New England towns. We found continuous variation of all five traits, with 84% of our 81 individuals having at least one trait outside parental limits. Hierarchical cluster analysis, along with two chloroplast and one nuclear species-specific markers, suggests the presence of intercrossing, segregating hybrids, and likely introgression between F1 hybrids and F. japonica. Our markers also show the first evidence of bidirectional hybridization between parental taxa in the U.S., emphasizing the complex structure of populations in our region. This study is a first step toward unraveling the evolutionary forces that have made these taxa such aggressive invaders in the U.S. The data may also affect management strategies originally designed for largely monomorphic, clonal populations.  相似文献   

12.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Genetic divergence and hybrid speciation   总被引:3,自引:0,他引:3  
Although the evolutionary importance of natural hybridization has been debated for decades, it has become increasingly clear that hybridization plays a fundamental role in the evolution of many plant and animal taxa, sometimes resulting in the formation of entirely new species. Although some hybrid species retain the base chromosome number of their parents, others combine the full chromosomal complements of their progenitors. Hybrid speciation can thus produce two fundamentally different types of evolutionary lineages, yet relatively little is known about the factors influencing ploidy level in hybrid neospecies. We estimated genetic divergence between species pairs that have given rise to homoploid and polyploid hybrid species and found that divergence is significantly greater for the parents of polyploids, even after controlling for potentially confounding factors. Our data thus provide the first direct evidence in support of the notion that the extent of genomic divergence between hybridizing species influences the likelihood of diploid versus polyploid hybrid speciation.  相似文献   

14.
Most models of hybridization assume that hybrids are less fit than their parental taxa. In contrast, some researchers have explored the possibility that hybrid individuals may actually have higher fitness and so play an important role in the generation of new species or adaptations. By estimating age-specific fitness components, we can determine not only how hybrid fitness differs from parental taxa, but also whether the fitness of hybrids relative to parental taxa changes with age. Here we describe an analysis of age-specific fitness traits in two species of Drosophila, D. pseudoobscura and D. persimilis, and their F1 hybrids. At early ages, hybrid females lay as many eggs as parental individuals, on average, but produce far fewer offspring. By late ages, in contrast, parental taxa show a steep decline in production not seen in hybrids, such that hybrids produce more offspring, on average, than parental taxa. Furthermore, egg-adult survival in hybrids is negatively correlated with egg density, whereas these traits are only weakly correlated in parental taxa. The results are limited somewhat by the fact that we analyze only two strains, and that these may be partially inbred. Nonetheless, the results are certainly illustrative, pointing out not only that at least some hybrid individuals may be as fit or fitter than parental taxa, but also that the difference between hybrids and parental taxa varies with age.  相似文献   

15.
Xu M  He X 《PloS one》2011,6(4):e18341
Genetic incompatibility is believed to be the major cause of postzygotic reproductive isolation. Despite huge efforts seeking for speciation-related incompatibilities in the past several decades, a general understanding of how genetic incompatibility evolves in affecting hybrid fitness is not available, primarily due to the fact that the number of known incompatibilities is small. Instead of further mapping specific incompatible genes, in this paper we aimed to know the overall effects of incompatibility on fertility and viability, the two aspects of fitness, by examining 89 gametes produced by yeast S. cerevisiae-S. paradoxus F1 hybrids. Homozygous F2 hybrids formed by autodiploidization of F1 gametes were subject to tests for growth rate and sporulation efficiency. We observed much stronger defects in sporulation than in clonal growth for every single F2 hybrid strain, indicating that genetic incompatibility affects hybrid fertility more than hybrid viability in yeast. We related this finding in part to the fast-evolving nature of meiosis-related genes, and proposed that the generally low expression levels of these genes might be a cause of the observation.  相似文献   

16.
The concentrations of selected elements and their biological absorption coefficients were determined for leaves from plants in native stands and reciprocal transplant gardens to determine whether niche differentiation occurs among the parental taxa and their hybrids in the big sagebrush hybrid zone in Utah. The bounded hybrid superiority model predicts such niche differentiation, while the ecologically neutral dynamic equilibrium model predicts complete niche overlap, at least in the vicinity of the hybrid zone. The concentrations of elements in the leaves of site-indigenous sagebrush and the biological absorption coefficients differed significantly between the subspecies and between either parental taxon and hybrids. Within reciprocal transplant gardens, both the elemental concentrations and the biological absorption coefficients differed among the gardens and taxa. Significant genotype-by-environment interactions were observed for several essential elements. Niche differentiation was evident as correspondence analyses ordinated the parental taxa and hybrids into separate groups even when raised in the same garden. These findings support the ecologically based bounded hybrid superiority model and suggest that the big sagebrush parental taxa and their hybrids have adapted to their respective unique habitats.  相似文献   

17.
Kameyama Y  Ohara M 《Annals of botany》2006,98(5):1017-1024
Background and Aims The free-floating aquatic bladderwort Utricularia australis f. australis is a sterile F1 hybrid of U. australis f. tenuicaulis and U. macrorhiza. However, co-existence of the hybrids and parental species has not been observed. In the present study, the following questions are addressed. (a) Does the capacity of the two parental species to reproduce sexually contribute to higher genotypic diversity than that of sterile F1 hybrid? (b) Are there any populations where two parental species and their hybrid co-exist? (c) If not, where and how do hybrids originate?• Methods The presence and absence of Utricularia was thoroughly investigated in two regions in Japan. An amplified fragment length polymorphism (AFLP) analysis was conducted for 397 individuals collected from all populations (33 in total) where Utricularia was observed.• Key Results The mean number of genotypes per population (G) and genotypic diversity (D) were extremely low irrespective of the capacity to reproduce sexually: G was 1·1–1·2 and D was 0·02–0·04. The hybrid rarely co-existed with either parental species, and the co-existence of two parental species was not observed. Several AFLP bands observed in the hybrid are absent in both parental genotypes, and parent and hybrid genotypes in the same region do not show greater genetic similarity than those in distant regions.• Conclusions The capacity to reproduce sexually in parental species plays no role in increasing genotypic diversity within populations. The observed genotypes of the hybrid could not have originated from hybridization between the extant parental genotypes within the study regions. Considering the distribution ranges of three investigated taxa, it is clear that the hybrid originated in the past, and hybrid populations have been maintained exclusively by clonal propagation, which may be ensured by both hybrid vigor and long-distance dispersal of clonal offspring.  相似文献   

18.
In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent‐of‐origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent‐of‐origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto‐nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation.  相似文献   

19.
We describe a narrow hybrid zone between the mottled sculpin (Cottus b. bairdi) and the Blue Ridge sculpin (C. caeruleomentum). Seven characters (dorsal fin rays, pectoral fin rays, caudal base band condition, male spawning coloration, and one frequency and two fixed allozyme differences) distinguish the two taxa in the hybrid zone. C. caeruleomentum and C. b. bairdi diverged in these characters in allopatry as indicated by their distribution on opposite sides of the Atlantic-Ohio divide. However, a stream capture placed these two taxa in secondary contact in Wills Creek, Potomac drainage (Atlantic slope). Allozyme data indicate the presence of post-F(1) hybrids in the zone of secondary contact. Changes in allozymes, morphology, and spawning coloration along a transect in Wills Creek reveal the hybrid zone is less than 20 river kilometers in length. Estimates of root mean square dispersal and gene flow tentatively suggest that selection is operating in the Wills Creek hybrid zone. C. b. bairdi and C. caeruleomentum are maintaining their identity in seven distinguishing characters on opposite ends of the hybrid zone revealing these two taxa are independent evolutionary lineages.  相似文献   

20.
Hybrid fitness is an important parameter to predict the evolutionary consequences of a hybridization event and to characterize hybrid zones. We studied fitness parameters of F1 and later‐generation hybrids between the lowland species Salix purpurea and the alpine S. helvetica that have recently emerged during colonization of an alpine glacier forefield. Fruit production (number of capsules per catkin and fruit set) did not differ between hybrids and parents, but the number of seeds per capsule of F1 hybrids was slightly lower than that of later‐generation hybrids and of the parents. Germination rates and seedling growth were tested on three substrates (pH 4.5, 7.0, and 8.0). Germination rates of seeds collected from F1 hybrids were lower on acid and neutral substrates, but equal at pH 8.0 compared to all other groups, while the seeds from later‐generation hybrids performed as well as the parents on all three substrates. In seedling growth, the colonizer S. purpurea performed better than all other taxa on all three substrates, while hybrids resembled the subalpine species S. helvetica. Results suggest that endogenous selection acts against F1 hybrids, but favors fitter genotypes in later‐generation hybrids. Exogenous selection via soil pH appears to be weak during seedling establishment. The pioneer vegetation on the glacier forefield may offer sufficient niche space for hybrid seedlings. Owing to the relatively high fitness of the hybrids and the scattered distribution of hybrids and parental individuals on the glacier forefield, this hybrid zone can be assigned to a mosaic model, probably facilitating gene flow and introgression between the parental species. As establishment of the hybrid zone appears to be linked to a colonization process, we propose to call it a pioneer mosaic hybrid zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号