首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
1. The megadiverse herbivores and their host plants are a major component of biodiversity, and their interactions have been hypothesised to drive the diversification of both. 2. If plant diversity influences the diversity of insects, there is an expectation that insect species richness will be strongly correlated with host‐plant species richness. This should be observable at two levels (i) more diverse host‐plant groups should harbour more species of insects, and (ii) the species richness of a group of insects should correlate with the richness of the host groups it uses. However, such a correlation is also consistent with a hypothesis of random host use, in which insects encounter and use hosts in proportion to the diversity of host plants. Neither of these expectations has been widely tested. 3. These expectations were tested using data from a species‐rich group of insects – the Coccidae (Hemiptera). 4. Significant positive correlations were found between the species richness of coccid clades (genera) and the species richness of the host‐plant family or families upon which the clades occur. On a global scale, more closely related plant families have more similar communities of coccid genera but the correlation is weak. 5. Random host use could not be rejected for many coccids but randomisation tests and similarity of coccid communities on closely related plant families show that there is non‐random host use in some taxa. Overall, our results support the idea that plant diversity is a driver of species richness of herbivorous insects, probably via escape‐and‐radiate or oscillation‐type processes.  相似文献   

2.
Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号