首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Abstract. Using comprehensive range information of northern Hemisphere birds and mammals, we assessed the taxonomic diversity of these two groups in four different regions: Europe, east Asia, and western and eastern North America. East Asia is the richest region in the number of bird and mammal species, genera, families and orders, except that mammal species richness is highest in western North America. Eastern North America is taxonomically the poorest region, but when only forest-associated taxa were considered in mammals taxonomic diversity is equally low in Europe and in eastern North America, and in birds, Europe is the least diverse region. Patterns in endemic taxa follow overall taxonomic diversity. The proportion of shared taxa between regions is higher among boreal species and genera than among all taxa. A comparison with tree species diversity underpins the role of east Asia as the most diverse of all northern biota. Largely congruent patterns at different taxonomic levels emphasizes the role of historical processes, such as differential extinction rate in response to paleoenvironmental fluctuations, in producing these patterns, but we stress the need for more research on the coevolution of species diversity and habitat diversity.  相似文献   

2.
粉条儿菜属(AletrisL.)隶属于肺筋草科,全世界有23种1变种,东亚有18种1变种,北美东南部有5种,为典型的东亚-北美间断分布的属.本文在种(变种)的水平上,研究了粉条儿菜属的地理分布及其分布中心和多样化中心,并对其起源和分化以及现代洲际间断分布格局的成因进行了分析.结果表明,(1)中国共分布有粉条儿菜属植物15种1变种,而广义的横断山地区集中分布有13种1变种,是东亚粉条儿菜属植物分布最为集中的地区,而且包含该属植物各个进化阶段的代表.因此,广义的横断山地区是粉条儿菜属在东亚的分布中心和多样化中心.(2)根据粉条儿菜属及其近缘属的分布格局推测,该属可能在不晚于第三纪早期,起源于古北大陆.东亚和北美的粉条儿菜属植物形态区别明显,应该是隔离分化的结果.(3)该属植物可能曾经广布于北半球,后来地质、气候以及冰川等因素的变化,导致该属在一些地区灭绝,而仅存于东亚和北美东南部.(4)尽管横断山及其周边地区是东亚粉条儿菜属的多样化中心,但该地区很可能并不是粉条儿菜属最早的分化中心,因横断山地区周边的一些特有种可能是在晚近的时期形成的新特有种;另外,东亚粉条儿菜属一些原始的种类主要分布于我国中东部到日本一带.所以,中国中东部到日本一带可能是粉条儿菜属早期的分化中心.  相似文献   

3.
Qian  Hong  Klinka  Karel  Kayahara  Gordon J. 《Plant Ecology》1998,138(2):161-178
Spatial patterns of plant diversity in the North American boreal forest were examined according to three plant life forms (woody plants, herbaceous plants, and bryophytes) and two taxonomic levels (species and genus), using sixty 9-ha plots sampled in white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (P. Mill.) B.S.P.) ecosystems along a transcontinental transect from the Pacific coast eastwards to the Atlantic coast. The patterns of inventory diversity (represented by alpha diversity), differentiation diversity (represented by the similarity index, habitat-heterogeneity index, similarity decay rate, and length of the first axis in detrended correspondence analysis), and pattern diversity (represented by the mosaic diversity index) were assessed along the transect in both ecosystem types. At the stand level, central North America had the highest alpha diversity in terms of the number of species or genera, and western North America had a higher alpha diversity than eastern North America. At the continental scale, herbaceous plants had the highest beta diversity in terms of floristic change from the eastern to western North America, bryophytes had the lowest beta diversity, and woody plants were in the middle, regardless of ecosystem type and taxonomic level. Central North America had the lowest mosaic diversity across the boreal transect of North America. The white spruce ecosystems had a higher alpha diversity than the black spruce ecosystems regardless of plant life form, taxonomic level and geographic location. The white spruce ecosystems tended to have more bryophytes, less woody plants, and higher species:genus ratio than the black spruce ecosystems. In general, the white spruce and black spruce ecosystems shared the same patterns in diversity changes at different spatial scales, plant life forms, and taxonomic levels across the transect studied. The existing patterns of plant diversity in the North American boreal forest area resulted from a combination of ecological processes and spatial configuration.  相似文献   

4.
Taxonomic diversity of vascular plants (ferns, gymnosperms and angiosperms) was compared between eastern Asia and North America. Eastern Asia has significantly higher species richness in all three classes but the difference was greatest in ferns and least in angiosperms. Differences in taxonomic treatments between the two continents are not likely contributors to these patterns. The relationship of regional to global species richness across the three plant classes suggested that diversity patterns were relatively homogeneous at three taxonomic levels. Thus, differences in species richness are established at the family level and are therefore relatively old. The previously noted fact that eastern Asia has a higher proportion of primitive taxa was shown by analyses both among and within plant classes. Diversity patterns across three taxonomic levels (i.e. family, genus and species) of the three classes may reflect the relative historical positions of the two continents (following continental drift) to the centre(s) of their origin, neighbouring land masses, differential speciation/extinction rates, and switches in dominance levels associated with climate change (including glaciation), as well as reproductive/dispersal mechanisms of the three plant classes.  相似文献   

5.
1. The distribution of Salix species among the continents. There are about 526 species of Salix in the world, most of which are distributed in the Northern Hemisphere with only a few species in the Southern Hemisphere. In Asia, there are about 375 species, making up 71.29 percent of the total in the world, including 328 endemics; in Europe, about 114 species, 21.67 percent with 73 endemics; in North America, about 91 species, 17.3 percent with 71 endemics; in Africa, about 8 species, 1.5 percent, with 6 endemics. Only one species occurs in South America. Asia, Europe and North America have 8 species in common (excluding 4 cultivated species). There are 34 common species between Asia and Europe, 14 both between Europe and North America and between Asia and North America, 2 between Asia and Africa. Acording to the Continental Drift Theory, the natural circumstances which promoted speciation and protected newly originated and old species were created by the orogenic movement of the Himalayas in the middle and late Tertiary. Besides, the air temperature was a little higher in Asia than in Europe and North America (except its west part) and the dominant glaciers were mountainous in Asia during the glacial epoch in the Quaternary Period. Then willows of Europe moved southwards to Asia. During the interglacial period they moved in opposite direction. Such a to-and-fro willow migration between Asia and Europe and between and North America occurred so often that it resulted in the diversity of willow species in Asia. Those species of willows common among the continents belong to the Arctic flora. 2. The multistaminal willows are of the primitive group in Salix. Asia has 28 species of multistaminal willows, but Europe has only one which is also found in Asia. These 28 species are divided into two groups, “northern type” and “southern type”, according to morphology of the ovary. The boundary between the two forms in distribution is at 40°N. The multistaminal willows from south Asia, Africa and South America are very similar to each other and may have mutually communicated between these continents in the Middle or Late Cretaceous Period. The southern type willows in south Asia are similar to the North American multistaminal willows but a few species. The Asian southern type willows spreaded all over the continents of Europe, Asia and North America through the communication between them before the Quaternany Period. Nevertheless, it is possible that the willows growing in North America immigranted through the middle America from South America. The Asian northern type multistaminal willows may have originated during the ice period. The multistaminal willows are more closed to populars in features of sexual organs. They are more primitive than the willows with 1-3 stamens and the most primitive ones in the genus. 3. The center of origin and development of willows Based on the above discussion it is reasonable to say that the region between 20°-40°N in East Asia is the center of the origin and differentiation of multistaminal willows. It covers Southern and Southwestern China and northern Indo-China Pennisula.  相似文献   

6.
鹅观草属的几个新组合   总被引:1,自引:0,他引:1  
蔡联炳 《植物研究》1996,16(1):48-50
本文报道了禾本科鹅观草属的三个种级新组合和四个变种级新组合。即大丛鹅观草Roegneria magnicaespis (D.F.Cui)L.B.Cai;新疆鹅观草Roegneria sinkiangensis(D.F.Cui)L.B.Cai;阿尔泰鹅观草Roegneria altaica(D.F.Cui)L.B.Cai;短芒鹅观草Roegneria glaberrima var.breviarista (D.F.Cui)L.B.Cai;林缘鹅观草Roegneria mutabilis var.nemoralis (D.F.Cui)L.B.Cai;多花鹅观草Roegneria abolinii var.pluriflora (D.F.Cui)L.B.Cai和曲芒鹅观草Roegneria tschimganica var.glabrispicula (D.F.Cui)L.B.Cai。  相似文献   

7.
中国鹅膏菌属(担子菌)的物种多样性   总被引:12,自引:3,他引:9  
鹅膏菌属(Amanita)是一个近世界性广布的大属,全球已被描述而又被承认的有近500种。在文献中,我国此属已记载约200种。然而,许多种都是原初描述于欧洲或北美的种类。近来的研究表明,东亚的鹅膏菌独特且有其自身的分布范围。东亚的有些种虽与产于欧洲或北美的某些种相似,但仔细的野外观察,详尽的形态解剖学和分子进化生物学研究结果表明,东亚的鹅膏菌是独立的分类群。在欧洲,人们有采集著名食菌恺撒鹅膏菌的习  相似文献   

8.
The present paper aims to discuss the geog raphical distribution of the Juglandaceae on the basis of unity of the phylogeny and the process of dispersal in the plants. The paper is divided into the following three parts: 1. The systematic positions and the distribution patterns of nine living genera in the family Juglandaceae (namely, Engelhardia, Oreomunnea, Alfaroa, Pterocarya, Cyclocarya, Juglans, Carya, Annamocarya and Platycarya) are briefly discussed. The evolutional relationships between the different genera of the Juglandaceae are elucidated. The fossil distribution and the geological date of the plant groups are reviewed. Through the analysis for the geographical distribution of the Juglandaceous genera, the distribution patterns may be divided as follows: A. The tropical distribution pattern a. The genera of tropical Asia distribution: Engelhardia, Annamocarya. b. The genera of tropical Central America distribution: Oreomunnea, Alfaroa. B. The temperate distribution pattern c. The genus of disjunct distribution between Western Asia and Eastern Asia: Pterocarya. d. The genus of disjunct distribution between Eurasia and America: Juglans. e. The genus of disjunct distribution between Eastern Asia and North America: Carya. f. The genera whose distribution is confined to Eastern Asia: Cyclocarya, Platycarya. 2. The distribution of species According to Takhtajan’s view point of phytochoria, the number of species in every region are counted. It has shown clearily that the Eastern Asian Region and the Cotinental South-east Asian Region are most abundant in number of genera and species. Of the 71 living species, 53 are regional endemic elements, namely 74.6% of the total species. The author is of the opinion that most endemic species in Eurasia are of old endemic nature and in America of new endimic nature. There are now 7 genera and 28 species in China, whose south-western and central parts are most abundant in species, with Province Yunnan being richest in genera and species. 3. Discussions of the distribution patterns of the Juglandaceae A. The centre of floristic region B. The centre of floristic regions is determined by the following two principles: a. A large number of species concentrate in a district, namely the centre of the majority; b. Species of a district can reflect the main stages of the systematic evolution of the Juglandaceae, namely the centre of diversity. It has shown clearly that the southern part of Eastern Asian region and the northern part of Continental South-east Asian Region (i.c. Southern China and Northern Indo-China) are the main distribution centre of the Juglandaceae, while the southern part of Sonora Region and Caribbean Region (i.c. South-western U.S.A., Mexico and Central America) are the secondary distribution centre. As far as fossil records goes, it has shown that in Tertiary period the Juglandaceae were widely distributed in northern Eurasia and North America, growing not only in Europe and the Caucasus but also as far as in Greenland and Alaska. It may be considered that the Juglandaceae might be originated from Laurasia. According to the analysis of distribution pattern for living primitive genus, for example, Engelhardia, South-western China and Northern Indo-China may be the birthplace of the most primitive Juglandaceous plants. It also can be seen that the primitive genera and the primitive sections of every genus in the Juglandaceae have mostly distributed in the tropics or subtropics. At the same time, according to the analysis of morphological characters, such as naked buds in the primitive taxa of this family, it is considered that this character has relationship with the living conditions of their ancestors. All the evidence seems to show that the Juglandaceae are of forest origin in the tropical mountains having seasonal drying period. B. The time of the origin The geological times of fossil records are analyzed. It is concluded that the origin of the Juglandaceae dates back at least as early as the Cretaceous period. C. The routes of despersal After the emergence of the Juglandaceous plant on earth, it had first developed and dispersed in Southern China and Indo-China. Under conditions of the stable temperature and humidity in North Hemisphere during the period of its origin and development, the Juglandaceous plants had rapidly developed and distributed in Eurasia and dispersed to North America by two routes: Europe-Greenland-North America route and Asia-Bering Land-bridge-North America route. From Central America it later reached South America. D. The formaation of the modern distribution pattern and reasons for this formation. According to the fossil records, the formation of two disjunct areas was not due to the origin of synchronous development, nor to the parallel evolution in the two continents of Eurasia and America, nor can it be interpreted as due to result of transmissive function. The modern distribution pattern has developed as a result of the tectonic movement and of the climatic change after the Tertiary period. Because of the continental drift, the Eurasian Continent was separated from the North American Continent, it had formed a disjunction between Eurasia and North America. Especially, under the glaciation during the Late Tertiary and Quaternary Periods, the continents in Eurasia and North America were covered by ice sheet with the exception of “plant refuges”, most plants in the area were destroyed, but the southern part of Eastern Asia remained practically intact and most of the plants including the Juglandaceae were preserved from destruction by ice and thence became a main centre of survival in the North Hemisphere, likewise, there is another centre of survival in the same latitude in North America and Central America. E. Finally, the probable evolutionary relationships of the genera of the Juglanda-ceae is presented by the dendrogram in the text.  相似文献   

9.
Episodic marine incursion has been a major driving force in the formation of present-day diversity. Marine incursion is considered to be one of the most productive ‘species pumps’ particularly because of its division and coalescence effects. Marine incursion events and their impacts on diversity are well documented from South America, North America and Africa; however, their history and impacts in continental East Asia largely remain unknown. Here, we propose a marine incursion scenario occurring in East Asia during the Miocene epoch, 10–17 Ma. Our molecular phylogenetic analysis of Platorchestia talitrids revealed that continental terrestrial populations (Platorchestia japonica) form a monophyletic group that is the sister group to the Northwest Pacific coastal species Platorchestia pacifica. The divergence time between the two species coincides with Middle Miocene high global sea levels. We suggest that the inland form arose as a consequence of a marine incursion event. This is the first solid case documenting the impact of marine incursion on extant biodiversity in continental East Asia. We believe that such incursion event has had major impacts on other organisms and has played an important role in the formation of biodiversity patterns in the region.  相似文献   

10.
Thuja, a genus of Cupressaceae comprising five extant species, presently occurs in both East Asia (3 species) and North America (2 species) and has a long fossil record from Paleocene to Pleistocene in the Northern Hemisphere. Two distinct hypotheses have been proposed to account for the origin and present distribution of this genus. Here we recognize and describe T. sutchuenensis Franch., a new fossil Thuja from the late Pliocene sediments of Zhangcun, Shanxi, North China, based on detailed comparisons with all living species and other fossil ones, integrate the global fossil records of this genus plotted in a set of paleomaps from different time intervals, which show that Thuja probably first appeared at high latitudes of North America in or before the Paleocene. This genus reached Greenland in the Paleocene, then arrived in eastern Asia in the Miocene via the land connection between East Asia and western North America. In the late Pliocene, it migrated into the interior of China. With the Quaternary cooling and drying, Thuja gradually retreated southwards to form today’s disjunctive distribution between East Asia and North America.  相似文献   

11.
水青冈属(Fagus L.)在北温带呈间断分布, 已发现的丰富的第三纪化石为讨论其起源和演化提供了证据。该文采用泛生物地理学的轨迹分析方法对水青冈属的分布进行了研究, 试图分析水青冈属的分布格局, 进而讨论其进化问题。结果表明, 水青冈属在中国、日本、北美、欧洲的分布是完全间断的, 没有一个共有轨迹连接它们, 即使在毗邻的、且有植物亲缘关系的中国和日本, 也没有一个共有轨迹连接。完全间断的轨迹对分析水青冈属的起源、演化和扩散学说, 没有提供任何信息。仅有两条共有轨迹分别分布在中国东南部和日本, 分别代表了中国4种和日本3种水青冈属种类的连接, 说明水青冈属经历了漫长的历史演化, 扩散能力是有局限性的, 仅在分化和多样性中心进行了一些分化和演化, 整个属并未进行长距离的扩散, 或者长距离扩散早已销声匿迹了, 现代的分布格局完全是以间断为最主要特征的。间断分布的动力解释为古地中海西撤、青藏高原隆起、东亚季风活动等地质历史事件, 第三纪以来特别是第四纪冰期活动等气候波动, 以及水青冈属植物的生物学特性(特别是喜温喜湿)。  相似文献   

12.
This study investigates the GM genetic relationships of 82 human populations, among which 10 represent original data, within and among the main broad geographic areas of the world. Different approaches are used: multidimensional scaling analysis and test for isolation by distance, to assess the correlation between genetic variation and spatial distributions; analysis of variance, to investigate the genetic structure at different hierarchical levels of population subdivision; genetic similarity map (geographic map distorted by available genetic information), to identify regions of high and low genetic variation; and minimal spanning network, to point out possible migration routes across continental areas. The results show that the GM polymorphism is characterized by one of the highest amounts of genetic variation observed so far among populations of different continents (Fct=0.3915, P < 0.0001). GM diversity can be explained by a model of isolation by distance (IBD) at most continental levels, with a particularly significant fit to IBD for the Middle East and Europe. Five peripheral regions of the world (Europe, west and south sub-Saharan Africa, Southeast Asia, and America) exhibit a low level of genetic diversity both within and among populations. By contrast, East and North African, Southwest Asian, and Northeast Asian populations are highly diverse and interconnected genetically by large genetic distances. Therefore, the observed GM variation can be explained by a "centrifugal model" of modern humans peopling history, involving ancient dispersals across a large intercontinental area spanning from East Africa to Northeast Asia, followed by recent migrations in peripheral geographic regions.  相似文献   

13.
Although the temperate regions of South America are known to have a diverse daphniid fauna, there has been no genetic evaluation of the existing taxonomic system or of the affinities between the North and South American faunas. The present study analyses mitochondrial DNA sequences and allozyme variation to investigate species diversity in 176 Daphnia populations from Argentina. This work established the presence of at least 15 species in Argentina, six of which are either undescribed or are currently misidentified and two of which represent range extensions of North American taxa. Eleven of the Argentine species appear endemic to South America, while the remaining four also occur in North America. In the latter cases, the close genetic similarity between populations from North and South America indicates the recent exchange of propagules between the continents. While biological interactions and habitat availability have undoubtedly contributed to the observed species distributions, chance dispersal has apparently played a dominant role in structuring large-scale biogeographical patterns in this genus and probably in other passively-dispersed organisms.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 171−205.  相似文献   

14.
椴树属的地理分布   总被引:13,自引:0,他引:13  
椴树属Tilia是椴树科一个形态特殊且唯一的北温带分布属,分布于亚洲、欧洲和北美,构成典型的北温带分布格局,三个分离的分布区之间缺乏共有种。本文对各分布区的种类进行重新评价,确认全属25种。其中东亚17种,占68%,包含了现存种类各个演化阶段的类群,是现代分布中心;欧洲-西西伯利亚6种,属于木果组及壳果组;北美2种,均为木果组成员。化石分布与现代地理分布格局基本相似,但分布纬度较现代分布偏北,达到北纬80°附近,且还出现于现今无椴树分布的亚洲大陆腹地,北美西部椴树至第三纪末完全绝迹,而东部到第四纪才有化石记录。根据现代地理分布,结合化石证据、地质历史、气候变迁及形态演化推测,椴树属可能在白垩纪晚期起源于中国东部亚热带山地,至少到始新世之前已散布至欧洲和北美西部。渐新世之后的全球降温和更新世大冰期对椴树属现代地理分布格局的形成起着至关重要的作用。  相似文献   

15.
16.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

17.
Speciation is the process that ultimately generates species richness. However, the time required for speciation to build up diversity in a region is rarely considered as an explanation for patterns of species richness. We explored this "time-for-speciation effect" on patterns of species richness in emydid turtles. Emydids show a striking pattern of high species richness in eastern North America (especially the southeast) and low diversity in other regions. At the continental scale, species richness is positively correlated with the amount of time emydids have been present and speciating in each region, with eastern North America being the ancestral region. Within eastern North America, higher regional species richness in the southeast is associated with smaller geographic range sizes and not greater local species richness in southern communities. We suggest that these patterns of geographic range size variation and local and regional species richness in eastern North America are caused by glaciation, allopatric speciation, and the time-for-speciation effect. We propose that allopatric speciation can simultaneously decrease geographic range size and increase regional diversity without increasing local diversity and that geographic range size can determine the relationship between alpha, beta, and gamma diversity. The time-for-speciation effect may act through a variety of processes at different spatial scales to determine diverse patterns of species richness.  相似文献   

18.
Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers   总被引:1,自引:0,他引:1  
? Premise of the study: This work represents the first molecular phylogeny of the economically important genus Vitis, an important genetic resource for breeding in grapevine, Vitis vinifera. ? Methods: A molecular phylogeny of Vitis using a combined data set of three noncoding regions of the plastid DNA genome was constructed from 47 accessions covering 30 species of Vitis. The data for the trnL-F marker were combined with previously published data across the Vitaceae. ? Key results: The molecular phylogeny demonstrated monophyly of the genus Vitis. Based on the combined analysis of three genes, Vitis is split into three clades that mirror the continental distribution of these accessions. The diversity is highest in the Asian clade, but the general genetic distances across taxa from different continents are relatively small. ? Conclusions: The findings support a relatively recent and intense gene flow between East Asia and North America and the possible impact of hybridization on the evolution of the genus Vitis. Taxon identity in important stock collections should be screened carefully because roughly 10% of the accessions analyzed in the present study had been misidentified.  相似文献   

19.
The grass genus Hordeum (Poaceae, Triticeae), comprising 31 species distributed in temperate and dry regions of the world, was analysed to determine the relative contributions of vicariance and long-distance dispersal to the extant distribution pattern of the genus. Sequences from three nuclear regions (DMC1, EF-G and ITS) were combined and analysed phylogenetically for all diploid (20 species) and two tetraploid Hordeum species and the outgroup Psathyrostachys. Ages of clades within Hordeum were estimated using a penalized likelihood analysis of sequence divergence. The sequence data resulted in an almost fully resolved phylogenetic tree that allowed the reconstruction of intrageneric migration routes. Hordeum evolved c. 12 million years ago in South-west Asia and spread into Europe and Central Asia. The colonization of the New World and South Africa involved at least six intercontinental exchanges during the last 4 million years (twice Eurasia-North America, North America-South America, twice South America-North America and Europe-South Africa). Repeated long-distance dispersal between the northern and southern hemisphere were important colonization mechanisms in Hordeum.  相似文献   

20.
葡萄属(Vitis)植物主要分布于东亚、北美洲以及欧洲至中亚地区。由于葡萄主要采用无性繁殖方式,地区间品种交流较多,同名异物及同物异名现象较为普遍,给葡萄属物种的分类、鉴定造成一定困难。本研究通过序列同源性比对的方法对葡萄属4种植物基因组的保守编码区进行比对,挖掘保守序列93条,经过验证,找到了一条可用于开发多态性分子标记的KOG3174同源序列,并根据该序列设计得到3对引物,可用于4种葡萄的分类、鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号