首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the reproductive biology of three sympatric Araceae species, Anthurium sagittatum, A. thrinax and Spathiphyllum humboldtii in French Guiana. The plants flowered simultaneously and were visited by scent‐collecting male euglossine bees, which were apparently their major pollinators. In total, each species was visited by 3–7 euglossine species, and 2–3 euglossine species accounted for at least 80% of all flower visits, with visits being plant species‐specific. Floral scent consisted of 6–10 main compounds, which made up 76–94% of the total amount of volatiles and were specific in these high amounts to each plant species. We suggest that the different floral scents lead to clear separation of the main pollinating euglossine species, providing a directed and efficient intraspecific pollen flow that results in high reproductive success. Since the simple floral (inflorescence) morphology of the studied plants does not support any morphological mechanisms to exclude visitors, as for example in euglossine‐pollinated perfume orchids, floral scent might be of major importance for the reproductive isolation and sympatric occurrence of these plants.  相似文献   

2.
We identified volatiles from the floral headspace of Yucca filamentosa using gas chromatography and mass spectrometry and analyzed floral scent composition and variation among populations pollinated by different yucca moth species. Twenty-one scent compounds were repeatedly identified and most could be categorized into two major classes: (1) homoterpenes derived from the sesquiterpene alcohol nerolidol and (2) long chain aliphatic hydrocarbons. Two biosynthetic pathways are thus responsible for the majority of floral volatiles in Y. filamentosa. The homoterpene E-4,8-dimethylnona-1,3,7-triene, which is released systemically by higher plants upon herbivory, was the most abundant compound. Two di-oxygenated compounds not previously reported as floral compounds also were detected. No differentiation in floral scent was observed between populations pollinated by different yucca moths, nor was there any correlation between chemical distance and geographic distance among populations. The total release rate of volatiles differed significantly among populations, but not between populations with different pollinators. The combination of unique compounds and low variation in the fragrance blend may reflect highly selective attraction of obligate pollinators to flowers. The observed lack of differentiation in floral scent can putatively explain high moth-mediated gene flow among sites, but it does not explain conservation of odor composition across populations with different pollinators.  相似文献   

3.
A continuous 15 month study of the floral ecology of four syntopic understorey palm species of Genoma was conducted in Amazonian Peru lowland rainforest. The spicate inflorescences of G. macrostachys, G. acaulis and G. gracilis are strictly protandrous and the plants are functionally dioecious. Data suggest that in G. macrostachys and G. acaulis pollination is based on a mimicry system, the pistillate flowers mimicking the staminate ones in colour, shape and scent. Pollen-collecting meliponine bees (Hymenoptera, Apidae, Meliponinae) and pollen-feeding syrphid flies (Diptera, Syrphidae) which visit inflorescences during both sexual stages are the pollinators of G. macrostachys. Geonoma acaulis is pollinated by small pollen-feeding weevils (Coleoptera, Curculionidae, Derelomini) that visit male and female spikes. Additionally, in G. macrostachys another pollinator type, viz. euglossine bees (Hymenoptera, Apidae, Euglossinae), which are attracted and rewarded by both types of flowers may account for long-distance pollination. The palm G. gracilis shows a very distinct pollination system. Although opportunistic insect visitors are attracted to the inflorescences of this species it seems to be mainly anemophilous because pollen becomes powdery during an thesis. The branched inflorescences of G. interrupta are also protandrous, but unlike the other species of Geonoma observed, staminate and pistillate anthesis of individual flowers are, for the most, overlapping. A broad spectrum of visitors is attracted (bees, wasps, flies, and beetles), which all may act as pollinators. Outcrossing is especially encouraged during the purely female phase at the end of the flowering cycle when there are no more staminate flowers in the inflorescence. Effects on the reproductive biology and population structure of different pollination systems and breeding system are discussed.  相似文献   

4.
Floral scent is a key mediator in many plant–pollinator interactions. It is known to vary not only among plant species, but also within species among populations. However, there is a big gap in our knowledge of whether such variability is the result of divergent selective pressures exerted by a variable pollinator climate or alternative scenarios (e.g., genetic drift). Cypripedium calceolus is a Eurasian deceptive lady’s-slipper orchid pollinated by bees. It is found from near sea level to altitudes of 2500 m. We asked whether pollinator climate and floral scents vary in a concerted manner among different altitudes. Floral scents of four populations in the Limestone Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Flower visitors and pollinators (the subset of visitors with pollen loads) were collected and identified. Preliminary coupled gas chromatographic and electroantennographic measurements with floral scents and pollinators revealed biologically active components. More than 70 compounds were detected in the scent samples, mainly aliphatics, terpenoids, and aromatics. Although several compounds were found in all samples, and all samples were dominated by linalool and octyl acetate, scents differed among populations. Similarly, there were strong differences in flower visitor spectra among populations with most abundant flower visitors being bees and syrphid flies at low and high altitudes, respectively. Pollinator climate differed also among populations; however, independent of altitude, most pollinators were bees of Lasioglossum, Andrena, and Nomada. Only few syrphids acted as pollinators and this is the first record of flies as pollinators in C. calceolus. The electrophysiological tests showed that bees and syrphid flies sensed many of the compounds released by the flowers, among them linalool and octyl acetate. Overall, we found that both floral scent and visitor/pollinator climate differ among populations. We discuss whether interpopulation variation in scent is a result of pollinator-mediated selection.  相似文献   

5.
6.

Background and Aims

Studies of floral scent evolution often attribute variation in floral scent to differences in pollinator behaviour, ignoring the potential for shared biochemistry between floral scent and floral colour to dictate patterns of phenotypic variation in scent production. To determine the relative effects of shared biochemistry and/or localized population-level phenomena on floral scent phenotype, floral scent composition and emission rate were examined in five wild populations of colour polymorphic Hesperis matronalis (Brassicaceae).

Methods

Floral scent was collected by in situ dynamic headspace extraction on purple and white colour morphs in each of five wild populations. Gas chromatography–mass spectroscopy of extracts allowed determination of floral scent composition and emission rate for all individuals, which were examined by non-metric multidimensional scaling and analysis of variance (ANOVA), respectively, to determine the contributions of floral colour and population membership to scent profile variation.

Key Results

Despite the fact that colour morph means were very similar in some populations and quite different in other populations, colour morphs within populations did not differ from each other in terms of scent composition or emission rate. Populations differed significantly from one another in terms of both floral scent composition and emission rate.

Conclusions

Shared biochemistry alone cannot explain the variation in floral scent phenotype found for H. matronalis. Such a result may suggest that the biochemical association between floral scent and floral colour is complex or dependent on genetic background. Floral scent does vary significantly with population membership; several factors, including environmental conditions, founder effects and genetics, may account for this differentiation and should be considered in future studies.Key words: Hesperis matronalis, floral scent, floral colour, plant volatiles, population differentiation, scent composition, scent emission rate, terpenoids, aromatics  相似文献   

7.
•Background and Aims Animal-pollinated angiosperms have evolved a variety of signalling mechanisms to attract pollinators. Floral scent is a key component of pollinator attraction, and its chemistry modulates both pollinator behaviour and the formation of plant–pollinator networks. The neotropical orchid genus Gongora exhibits specialized pollinator associations with male orchid bees (Euglossini). Male bees visit orchid flowers to collect volatile chemical compounds that they store in hind-leg pouches to use subsequently during courtship display. Hence, Gongora floral scent compounds simultaneously serve as signalling molecules and pollinator rewards. Furthermore, because floral scent acts as the predominant reproductive isolating barrier among lineages, it has been hypothesized that chemical traits are highly species specific. A comparative analysis of intra- and inter-specific variation of floral scent chemistry was conducted to investigate the evolutionary patterns across the genus.•Methods Gas chromatography–mass spectrometry (GC-MS) was used to analyse the floral scent of 78 individuals belonging to 28 different species of Gongora from two of the three major lineages sampled across the neotropical region. Multidimensional scaling and indicator value analyses were implemented to investigate the patterns of chemical diversity within and among taxonomic groups at various geographic scales. Additionally, pollinator observations were conducted on a sympatric community of Gongora orchids exhibiting distinct floral scent phenotypes.•Key Results A total of 83 floral volatiles, mainly terpenes and aromatic compounds, were detected. Many of the identified compounds are common across diverse angiosperm families (e.g. cineole, eugenol, β-ocimene, β-pinene and terpinen-4-ol), while others are relatively rare outside euglossine bee-pollinated orchid lineages. Additionally, 29 volatiles were identified that are known to attract and elicit collection behaviour in male bees. Floral scent traits were less variable within species than between species, and the analysis revealed exceptional levels of cryptic diversity. Gongora species were divided into 15 fragrance groups based on shared compounds. Fragrance groups indicate that floral scent variation is not predicted by taxonomic rank or biogeographic region.•Conclusions Gongora orchids emit a diverse array of scent molecules that are largely species specific, and closely related taxa exhibit qualitatively and quantitatively divergent chemical profiles. It is shown that within a community, Gongora scent chemotypes are correlated with near non-overlapping bee pollinator assemblies. The results lend support to the hypothesis that floral scent traits regulate the architecture of bee pollinator associations. Thus, Gongora provides unique opportunities to examine the interplay between floral traits and pollinator specialization in plant–pollinator mutualisms.  相似文献   

8.
Floral evolution often involves suites of traits, including morphology, colour and scent, but these traits are seldom analysed together in comparative studies. We investigated the associations between floral traits and pollination systems in Schizochilus, a southern African orchid genus with small nectar-producing flowers that has not been studied previously with respect to pollination biology. Field observations indicated the presence of distinct pollination systems in the four species which occur in the Drakensberg, including pollination by muscid flies in Schizochilus angustifolius, tachinid flies in Schizochilus zeyheri, various small flies in Schizochilus bulbinella and bees and wasps in Schizochilus flexuosus. Pollination success and pollen transfer efficiency clearly differed among the four species but were not correlated with the quantity of nectar rewards. Multivariate analysis of floral morphology and floral scent chemistry based on GC-MS data revealed significant differences among species as well as populations within species. The floral scent of S. angustifolius was dominated by the benzenoid compounds benzaldehyde and phenylacetaldehyde. Samples of one population of S. bulbinella were relatively similar to S. angustifolius but samples of another population were very distinct due to the occurrence of the nitrogen-containing compounds 3-methyl-butyl aldoxime (syn/anti) and the higher amounts of aliphatic esters, alcohols and acids. In contrast, the floral scent of S. flexuosus and S. zeyheri was characterized by high relative amounts of methyl benzoate. We conclude that Schizochilus has distinct, specialized pollination systems associated with subtle but significant variation in floral morphology and scent chemistry. We also caution that sampling of several populations may be required to characterize floral scent composition at the species-level in plants.  相似文献   

9.
We studied the relative effectiveness of different pollinators of Spathiphyllum friedrichsthalii Schott for 15 months on Barro Colorado Island, Panama. Pollen-foraging stingless bees (Apidae: Trigona) made 87% of floral visits. Experiments showed that these bees pollinate flowers, and correlations of fruit- and seed-set with visitation frequencies and floral contact times suggested that they were responsible for the majority of seeds produced. Fifteen species of fragrance-foraging, male euglossine bees (Apidae: Euglossini) collectively accounted for a small portion of seed-set in fewer than 27% of the inflorescences. Neocorynura (Halictidae) were pollen thieves and were unimportant as pollinators. We propose that euglossine and stingless bees differentially influence outcrossing rates and the evolution of floral traits of S. friedrichsthalii. Foraging behavior of male euglossines should allow for more long-distance pollen flow whereas stingless bees are likely to promote near-neighbor and geitonogamous pollinations. We discuss why the prolonged male phase of anthesis in this protogynous species may be maintained through pollination by stingless bees rather than male euglossines. Furthermore, although the floral fragrance is attractive to many species of male euglossines, it attracts few individuals. This condition may represent an intermediate step in the evolution of predominant pollination by male euglossines.  相似文献   

10.
The neotropical orchid genus Catasetum embraces about 180 species that produce perfume as reward for pollinators (i.e. male euglossine bees). Among the ca. 1000 perfume‐rewarding plants, Catasetum species are the best studied with respect to their natural history. Nevertheless, the pollination ecology of most species (> 80%) remains unknown. Here, we investigated the pollination ecology and floral scent chemistry of C. galeritum, a rare species endemic to the poorly investigated Brazilian Amazon. Flowers of C. galeritum were visited only by male bees of Eufriesea superba. Its perfume bouquet was composed of six volatiles, with 1,4‐dimethoxybenzene accounting for about 85% of the total scent discharge. Curiously, this compound is a potent attractant of more than 40 euglossine species. The absence of euglossine species other than Ef. superba on flowers of C. galeritum might be, therefore, be mediated by a modifier effect of another compound(s) in its floral scent bouquet.  相似文献   

11.
Background and AimsThe transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic–alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer.MethodsIn a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece.Key ResultsThe self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories.ConclusionsOur study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.  相似文献   

12.
Integrating floral scent, pollination ecology and population genetics   总被引:1,自引:1,他引:0  
1 . Floral scent is a key factor in the attraction of pollinators. Despite this, the role of floral scent in angiosperm speciation and evolution remains poorly understood. Modern population genetic approaches when combined with pollination ecology can open new opportunities for studying the evolutionary role of floral scent.
2 . A framework of six hypotheses for the application of population genetic tools to questions about the evolutionary role of floral scent is presented. When floral volatile chemistry is linked to pollinator attraction we can analyse questions such as: Does floral volatile composition reflect plant species boundaries? Can floral scent facilitate or suppress hybridization between taxa? Can the attraction of different pollinators influence plant mating systems and pollen-mediated gene flow? How is population genetic structure indirectly influenced by floral scent variation?
3 . The application of molecular tools in sexually deceptive orchids has confirmed that volatile composition reflects species boundaries, revealed the role of shared floral odour in enabling hybridization, confirmed that the sexual attraction mediated by floral odour has implications for pollen flow and population genetic structure and provided examples of pollinator-mediated selection on floral scent variation. Interdisciplinary studies to explore links between floral volatile variation, ecology and population genetics are rare in other plant groups.
4 . Ideal study systems for future floral scent research that incorporate population genetics will include closely related taxa that are morphologically similar, sympatric and co-flowering as well as groups that display wide variation in pollination mechanisms and floral volatiles.  相似文献   

13.
Floral fragrances are an important component for pollinator attraction in beetle-pollinated flowers. Several genera in the Proteaceae contain beetle-pollinated species. However, there is no information on the floral scent chemistry of beetle-pollinated members of the family. In this paper we report on the spatial variation and differences between developmental stages in emission of inflorescence (flowerhead) volatiles of four South African Protea species (P. caffra, P. dracomontana, P. simplex, and P. welwitschii) that are pollinated by cetoniine beetles. The scents from different inflorescence parts (bracts, perianth, styles, and nectar) and from successive anthesis stages of whole inflorescences were sampled using dynamic headspace collection and identified using GC–MS. Although the four species shared many scent compounds, possibly reflecting their close phylogenetic relationships and common pollinators, they showed significant differences in overall scent composition due to various species-specific compounds, such as the unique tiglate esters found in the scent of P. welwitschii. The strongest emissions and largest number of volatiles, especially monoterpenes, were from inflorescences at full pollen dehiscence. Senescing inflorescences of two species and nectars of all species emitted proportionally high amounts of acetoin (3-hydroxy-2-butanone) and aromatic alcohols, typical fermentation products. As a consequence, the scent composition of nectar was much more similar among species than was the scent composition of other parts of the inflorescence. These results illustrate how the blends of compounds that make up the overall floral scent are a dynamic consequence of emissions from various plant parts.  相似文献   

14.
The variation in floral scent composition within and among populations of four taxa belonging to the Pyrola rotundifolia complex was analyzed using Principal Component Analysis. Two major groups were recognized, P. norvegica and P. grandiflora on the one side and P. rotundifolia s. str. on the other. Benzaldehyde dominated the scent of the first group and methoxy benzenes and phenyl propanoids that of the second group. A large variation in the floral scent chemistry was found both within some of the studied populations as well as among them. The floral scent composition of P. rotundifolia ssp. maritima was no more different from P. rotundifolia ssp. rotundifolia , than the differences between populations of P. rotundifolia ssp. rotundifolia . The findings are in partial agreement with the current delimitation of the taxa in the P. rotundifolia complex.  相似文献   

15.
One third of all orchid species are deceptive and do not reward their pollinators. Such deceptive orchids are often characterised by unusually high variation in floral signals such as colour and scent. In this study, we investigated the scent composition of two Mediterranean food-deceptive orchids Orchis mascula, Orchis pauciflora, and their hybrid, O. x colemanii. Scent was collected IN SITU by headspace sorption and was subsequently analysed with gas chromatography and gas chromatography-mass spectrometry. We compared variation of odour compounds within and between populations as well as species. We identified 35 floral scent compounds, mainly monoterpenes, which were shared by both species. Both quantitative and qualitative variability within and among populations was high. Many individuals within species could be classified to different "odour-types". In spite of high qualitative and quantitative intra- and inter-population variability, the species were clearly differentiated in their scent bouquets, whereas most hybrid individuals emitted an intermediate scent.  相似文献   

16.
Oligolectic bees are specialists that collect pollen from one or a few closely related species of plants, while polylectic bees are generalists that collect pollen from both related and unrelated species of plants. Because of their more restricted range of floral hosts, it is expected that specialists persist in more isolated populations than do generalists. We present data on the population structure of two closely related bee species sampled from a super abundant floral host in the southern Atacama Desert. Pairwise comparisons of population subdivision over identical distances revealed that the specialist bee had significantly more differentiated populations in comparison to the generalist. Further, populations of the specialist had significantly less genetic variation, measured as observed and expected heterozgyosity, than those of the generalist. Our data support the hypothesis of decreased gene flow among populations of the specialist bee even at equivalent geographic distances. The resulting reductions in effective population size for specialists make them particularly prone to extinction due to both demographic and genetic reasons. Our findings have important implications for the conservation of bees and other specialist insects. Deceased  相似文献   

17.
Gentianella bohemica Skalický (Gentianaceae) is a critically endangered species endemic to the Bohemian Massif in the border region of Germany, Czechia and Austria. It consists of a restricted number of extremely scattered populations which are known to form distinct genetic groups. The objective of this work was to test for differences in the floral scent between Gentianella bohemica and Gentianella germanica and within these two species among populations, and to test for a correlation of scent and genetic similarity among the populations of G. bohemica. Floral scent was collected from the inflorescences/plants of eight flowering populations of G. bohemica and three populations of G. germanica using dynamic headspace methods, followed by GC/MS analyses. Both species emitted several aromatic and terpenoid compounds and multivariate analyses revealed differences in scent between the two species and within species among G. bohemica populations. Volatile components overlapped as expected for closely related species but floral scent was taxon-specific. Floral scent differentiation among G. bohemica populations was in high congruence with the genetic differentiation suggesting that scent differences among populations have a genetic basis and showing that scent is a suitable chemotaxonomic marker in this species.  相似文献   

18.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

19.
Geographic trait variations are often caused by locally different selection regimes. As a steep environmental cline along altitude strongly influences adaptive traits, mountain ecosystems are ideal for exploring adaptive differentiation over short distances. We investigated altitudinal floral size variation of Campanula punctata var. hondoensis in 12 populations in three mountain regions of central Japan to test whether the altitudinal floral size variation was correlated with the size of the local bumblebee pollinator and to assess whether floral size was selected for by pollinator size. We found apparent geographic variations in pollinator assemblages along altitude, which consequently produced a geographic change in pollinator size. Similarly, we found altitudinal changes in floral size, which proved to be correlated with the local pollinator size, but not with altitude itself. Furthermore, pollen removal from flower styles onto bees (plant's male fitness) was strongly influenced by the size match between flower style length and pollinator mouthpart length. These results strongly suggest that C. punctata floral size is under pollinator‐mediated selection and that a geographic mosaic of locally adapted C. punctata exists at fine spatial scale.  相似文献   

20.
Reproductive traits that function in pollinator attraction may be reduced or lost during evolutionary transitions from outcrossing to selfing. Although floral scent plays an important role in attracting pollinators in outcrossing species, few studies have investigated associations between floral scent variation and intraspecific mating system transitions. The breakdown of distyly to homostyly represents a classic example of a shift from outcrossing to selfing and provides an opportunity to test whether floral fragrances have become reduced and/or changed in composition with increased selfing. Here, we evaluate this hypothesis by quantifying floral volatiles using gas chromatography-mass spectrometry in two distylous and four homostylous populations of Primula oreodoxa Franchet, a perennial herb from SW China. Our analysis revealed significant variation of volatile organic compounds (VOCs) among populations of P. oreodoxa. Although there was no difference in VOCs between floral morphs in distylous populations as predicted, we detected a substantial reduction in VOC emissions and the average number of scent compounds in homostylous compared with distylous populations. A total of 12 compounds, mainly monoterpenoids and sesquiterpenoids, distinguished homostylous and distylous morphs; of these, (E)-β-ocimene was the most important in contributing to the difference in volatiles, with significantly lower emissions in homostyles. Our findings support the hypothesis that the transition from outcrossing to selfing is accompanied by the loss of floral volatiles. The modification to floral fragrances in P. oreodoxa associated with mating system change might occur because high selfing rates in homostylous populations result in relaxed selection for floral attractiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号