首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of β-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.  相似文献   

2.
Apelin is the endogenous ligand for the APJ receptor and both apelin and APJ are expressed in the gastrointestinal (GI) tract. The aim of this study was to define ontogeny of apelin and APJ in the developing rodent GI tract by measuring expression levels and characterizing abundance and cellular localization at an embryonic stage (E18.5 or E21), two postnatal stages (P4, P16) and in the adult. Apelin and APJ mRNA levels were measured by real time RT-PCR, apelin and APJ-containing cells were identified by immunohistochemical (IHC) staining. Gastric, duodenal and colonic apelin and APJ mRNA levels were highest at birth and declined postnatally. In the postnatal rat stomach, few apelin peptide-containing cells were identified, the density of gastric apelin-containing cells increased progressively after weaning and into adulthood. A robust APJ immunostaining was observed postnatally in the epithelium, intestinal goblet cells and in smooth muscle cells. In the adult rat, APJ immunostaining in the surface epithelium and goblet cells decreased markedly. During the early postnatal period, in an apelin-deficient mouse, APJ expression and immunostaining in the gut were reduced suggesting that apelin regulates APJ. Together, our data support a role for the apelin–APJ system in the regulation of smooth muscle, epithelial and goblet cell function in the GI tract.  相似文献   

3.
Prion diseases are believed to develop from the conformational change of normal cellular prion protein (PrPc) to a pathogenic isoform (PrPsc). PrPc is present in both the central nervous system and many peripheral tissues, although protein concentration is significantly lower in non-neuronal tissues. PrPc expression is essential for internalization and replication of the infectious agent. Several works have pointed to the gastrointestinal (GI) tract as the principal site of entry of PrPsc, but how passage through the GI mucosa occurs is not yet known. Here we studied PrPc expression using Western blot, RT-PCR, and immunohistochemistry in rat GI tract. PrPc mRNA and protein were detected in corpus, antrum, duodenum, and colon. Immunoreactivity was found in scattered cells of the GI epithelium. With double immunofluorescence, these cells have been identified as neuroendocrine cells. PrPc immunostaining was found in subsets of histamine, somatostatin (Som), ghrelin, gastrin (G), and serotonin (5HT) cells in stomach. In small and large bowel, PrPc cells co-localized with subpopulations of 5HT-, Som-, G-, and peptide YY-immunolabeled cells. Our results provide evidence for a possible and important role of endocrine cells in the internalization of PrPsc from gut lumen.  相似文献   

4.
5.
Development of the gastrointestinal (GI) tract depends on reciprocal epithelial-mesenchymal cell signaling. Here, we demonstrate a role for platelet-derived growth factor-A (PDGF-A) and its receptor, PDGFR-(alpha), in this process. Mice lacking PDGF-A or PDGFR-(alpha) were found to develop an abnormal GI mucosal lining, including fewer and misshapen villi and loss of pericryptal mesenchyme. Onset of villus morphogenesis correlated with the formation of clusters of PDGFR-(alpha) positive cells, 'villus clusters', which remained located at the tip of the mesenchymal core of the growing villus. Lack of PDGF-A or PDGFR-(alpha) resulted in progressive depletion of PDGFR-(alpha) positive mesenchymal cells, the formation of fewer villus clusters, and premature expression of smooth muscle actin (SMA) in the villus mesenchyme. We found that the villus clusters were postmitotic, expressed BMP-2 and BMP-4, and that their formation correlated with downregulated DNA synthesis in adjacent intestinal epithelium. We propose a model in which villus morphogenesis is initiated as a result of aggregation of PDGFR-(&agr;) positive cells into cell clusters that subsequently function as mesenchymal centers of signaling to the epithelium. The role of PDGF-A seems to be to secure renewal of PDGFR-(alpha) positive cells when they are consumed in the initial rounds of cluster formation.  相似文献   

6.
7.
Bats have a very high mass-specific energy demand due to small size and active flight. European bat species are mostly insectivorous and the morphology of the gastrointestinal (GI) tract should be adapted accordingly. This study investigated the general anatomy by histology and the function by analysing carbohydrate distribution in particular of the mucus of the GI tract of the insectivorous bat Pipistrellus pipistrellus. The GI tracts of three individuals were dissected, fixed in formaldehyde, and embedded in paraffin wax. The tissues and cells of the GI tract of P. pipistrellus were analysed by classical (acid alizarin blue, haematoxylin-eosin, and Masson Goldner Trichrome), histochemical (periodic acid-Schiff, Alcian blue at pH 2.5) and lectin histochemical (lectins WGA and HPA) staining procedures. The GI tract of P. pipistrellus is organised into the typical mammalian layers. The short, narrow, and thin-walled esophagus is simple with a folded stratified squamous epithelium without glands but mucous surface cells secreting neutral mucus. The stomach is globular shaped without specialisation. Mucous surface cells produced neutral mucus whereas neck and parietal cells secreted a mixture of neutral and acid mucus. Chief cell surface was positive for N-acetylglucosamine and the cytoplasm for N-acetylgalactosamine residues. The intestine lacked a caecum and appendix. The small intestine was divided into duodenum, jejunum-ileum and ileum-colon. The epithelium consisted of columnar enterocytes and goblet cells. The large intestine is short, only represented by the descending colon-rectum. It lacked villi and the mucosa had only crypts of Lieberkühn. Towards the colon-rectum, goblet cells produced mucus with N-acetylglucosamine residues increasing in acidity except in colon-rectum where acidity was highest in the base of crypts. Along the tube the surface of enterocytes was positive for N-acetylglucosamine and N-acetylgalactosamine. All over the mucus filling the lumen of the GI tract was positive for N-acetylglucosamine and increased in acidity in all parts except of the stomach.In conclusion, the simple GI tract showed an anatomical reduction of tissue enabling for a short retention time and a reduction of the load carried during flight: short GI tract, lack of lymphoid tissue, missing of glands in certain regions, and a distinct pattern of mucus distribution, indicating different physiological functions of these areas. The GI tract of P. pipistrellus was typical for an insectivorous species probably representing the ancestral condition.Key words: Chiroptera, esophagus, glycoconjugates, intestine, lectins, stomach  相似文献   

8.
Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members related to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family and are encoded by 10 genes in the human. They are secreted at high levels by placental syncytiotrophoblast into maternal blood during pregnancy, and are implicated in immunoregulation, thromboregulation, and angiogenesis. To determine whether PSGs are expressed in tumors, we characterized 16 novel monoclonal antibodies to human PSG1 and used 2 that do not cross-react with CEACAMs to study PSG expression in tumors and in the gastrointestinal (GI) tract using tissue arrays and immunohistochemistry. Staining was frequently observed in primary squamous cell carcinomas and colonic adenocarcinomas and was correlated with the degree of tumor differentiation, being largely absent from metastatic samples. Staining was also observed in normal oesophageal and colonic epithelium. PSG expression in the human and mouse GI tract was confirmed using quantitative RT-PCR. However, mRNA expression was several orders of magnitude lower in the GI tract compared to placenta. Our results identify a non-placental site of PSG expression in the gut and associated tumors, with implications for determining whether PSGs have a role in tumor progression, and utility as tumor biomarkers.  相似文献   

9.
In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na+–K+-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.  相似文献   

10.
The inability of humans to adequately regulate fat consumption is a salient contributor to the development of obesity. The macronutrients, fat, protein and carbohydrate, within foods are detected at various stages of consumption, during which their digestive products, fatty acids, amino acids and sugars, interact with chemosensory cells within the oral epithelium (taste receptor cells) and gastrointestinal (GI) tract (enteroendocrine cells). This chemoreception initiates functional responses, including taste perception, peptide secretion and alterations in GI motility, that play an important role in liking of food, appetite regulation and satiety. This review will summarize the available evidence relating to the oral and GI regulation of fat intake and how chemoreception at both locations is associated with digestive behavior, satiety and weight regulation.  相似文献   

11.
Molecular sensing by gastrointestinal (GI) cells plays a critical role in the control of multiple fundamental functions in digestion and also initiates hormonal and/or neural pathways leading to the regulation of caloric intake, pancreatic insulin secretion, and metabolism. Molecular sensing in the GI tract is also responsible for the detection of ingested harmful drugs and toxins, thereby initiating responses critical for survival. The initial recognition events and mechanism(s) involved remain incompletely understood. The notion to be discussed in this article is that there are important similarities between the chemosensory machinery elucidated in specialized neuroepithelial taste receptor cells of the lingual epithelium and the molecular transducers localized recently in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.  相似文献   

12.
Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: 1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; 2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; 3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and 4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.  相似文献   

13.
For the majority of vertebrates, the kidneys are not the sole organs that function to maintain homeostasis of body fluid and electrolytes. Mammals are unusual in this respect, as the kidneys are the organs that fill this role. For non-mammalian vertebrates, other organs such as gills, skin, salt glands, urinary bladders and the gastrointestinal (GI) system function in concert with the kidneys in the control of fluid and ion balance. Birds are of particular interest and unique as they do not possess a urinary bladder and the renal output enters the lower GI tract. The physiology of the interaction of avian kidneys and lower GI tract is an excellent example of integrative physiology and several aspects of it have been examined, for example, the role of the avian antidiuretic hormone (arginine vasotocin, AVT) in controlling renal output. AVT produces both a tubular and glomerular antidiuresis. The glomerular antidiuresis is important, as the fluid from the kidneys that enters the GI should not be highly concentrated. Another hormone, aldosterone, has been shown to play an important role in regulating the transport of sodium by the GI epithelium. In addition, the lower GI tract plays a significant role in recycling a portion of the nitrogen that leaves the kidneys as uric acid. Furthermore, the output of avian kidneys contains large amount of protein that is conserved by the lower GI tract.  相似文献   

14.

Background and Aim

The largest source of melatonin, according to animal studies, is the gastrointestinal (GI) tract but this is not yet thoroughly characterized in humans. This study aims to map the expression of melatonin and its two receptors in human GI tract and pancreas using microarray analysis and immunohistochemistry.

Method

Gene expression data from normal intestine and pancreas and inflamed colon tissue due to ulcerative colitis were analyzed for expression of enzymes relevant for serotonin and melatonin production and their receptors. Sections from paraffin-embedded normal tissue from 42 individuals, representing the different parts of the GI tract (n=39) and pancreas (n=3) were studied with immunohistochemistry using antibodies with specificity for melatonin, MT1 and MT2 receptors and serotonin.

Results

Enzymes needed for production of melatonin are expressed in both GI tract and pancreas tissue. Strong melatonin immunoreactivity (IR) was seen in enterochromaffin (EC) cells partially co-localized with serotonin IR. Melatonin IR was also seen in pancreas islets. MT1 and MT2 IR were both found in the intestinal epithelium, in the submucosal and myenteric plexus, and in vessels in the GI tract as well as in pancreatic islets. MT1 and MT2 IR was strongest in the epithelium of the large intestine. In the other cell types, both MT2 gene expression and IR were generally elevated compared to MT1. Strong MT2, IR was noted in EC cells but not MT1 IR. Changes in gene expression that may result in reduced levels of melatonin were seen in relation to inflammation.

Conclusion

Widespread gastroenteropancreatic expression of melatonin and its receptors in the GI tract and pancreas is in agreement with the multiple roles ascribed to melatonin, which include regulation of gastrointestinal motility, epithelial permeability as well as enteropancreatic cross-talk with plausible impact on metabolic control.  相似文献   

15.
16.
Apelin cells in the rat stomach   总被引:4,自引:0,他引:4  
Apelin is a recently discovered peptide that is the endogenous ligand for the APJ receptor. Apelin is produced in the central nervous system, heart, lung, mammary gland and gastrointestinal (GI) tract. The aim of this study was to identify by immunohistochemistry (IHC) cell types in the rat stomach that produce apelin peptide. IHC revealed abundant apelin-positive cells, primarily in the neck and upper base regions of the gastric glands in the mucosal epithelium. Apelin is not detected in the muscle layer. Apelin-positive cells were identified as mucous neck, parietal cells, and chief cells. Apelin is also identified in gastric epithelial cells that produce chromogranin A (CGA), a marker of enteroendocrine cells. The findings that apelin is expressed in gastric exocrine and endocrine cells agrees with and extends other data showing that apelin peptide is measurable in the gut lumen and in the systemic circulation by immunoassay.  相似文献   

17.
 The distribution of serotonin-immunoreactive (5HT-IR) nerve cells and fibers was thoroughly investigated immunohistochemically in the rat stomach, duodenum, jejunum, ileum, and colon. The immunoreactivity of the 5HT neurons was compared between non-treated controls and animals treated with colchicine, colchicine plus 5-hydroxytryptophan (5HTP), colchicine plus pargyline, and reserpine. The intensity of immunoreactivity in nerve fibers as well as nerve cell bodies was enhanced mostly in colchicine plus pargyline treated animals, therefore these animals were used for an observation of precise localization of 5HT in the rat gastrointestinal (GI) tract. Immunoreactivity in the nerve cell bodies and fibers was completely abolished in the GI tract of reserpine treated animals. The pattern of localization and projection of 5HT-IR neurons was similar in all segments of the rat GI tract. 5HT-IR nerve cell bodies were located in the myenteric plexus and showed the distinctive features of Dogiel type I neurons. Prominent bundles of varicose fibers traversed the myenteric ganglia and some of them surrounded the cell bodies of immunopositive and immunonegative neurons. 5HT-IR nerve fibers were located in the submucous plexus, densely entwined about the submucosal blood vessels. Most characteristically, 5HT-IR nerve fibers invaded the lamina propria of mucosa where they underlay the crypt epithelium. In conclusion, the present study showed that 5HT-IR neurons located in the myenteric plexus projected fibers widely in the rat GI tract. The localization of fibers in the lamina propria of mucosa implies that this neuron may exert an important role in the epithelial function of the GI tract. Accepted: 8 October 1996  相似文献   

18.
The gastrointestinal (GI) tract is a complex ecosystem generated by the alliance of GI epithelium, immune cells and resident microbiota. The three components of the GI ecosystem have co-evolved such that each relies on the presence of the other two components to achieve its normal function and activity. Experimental systems such as cell culture, germ-free animal models and intestinal isografts have demonstrated that each member of the GI ecosystem can follow a predetermined developmental pathway, even if isolated from the other components of the ecosystem. However, the presence of all three components is required for full physiological function. Genetic or functional alterations of any one component of this ecosystem can result in a broken alliance and subsequent GI pathology. A more detailed understanding of the interactions among microbiota, GI epithelium and the immune system should provide insight into multiple human disease states.  相似文献   

19.
Like many other neuropeptides, vasopressin is not confined to the hypothalamic neurohypophysial system. Furthermore, vasopressin was found to be a potent vasoconstrictor in the rat jejunum, reducing myenteric artery flow. These associations were the basis of this investigation on the presence of vasopressin in the gastrointestinal (GI) tract by both RIA and immunohistochemistry. Portions of the gastrointestinal tract and pancreatic islets of the rat were extracted with 0.1 N HCl for RIA measurements of AVP content. Similar portions from the male cat GI tract were used for immunohistochemistry studies. Acid extracts of the GI tract were found to contain immunoreactive AVP with the highest concentration (pg/mg protein) in the fundus portion of the stomach (15.0 +/- 1.6) and slightly lower values down along the antrum-pylorus portion (6.7 +/- 0.6), proximal jejunum (8.6 +/- 0.2), distal ileum (9.7 +/- 0.3) and colon (11.9 +/- 0.5). In the pancreatic islets the concentration was much higher (72.0 pg/mg protein). The extract inhibition curves showed parallelism with the appropriate standard preparation of AVP in the specific RIA. Immunohistochemical localization showed IR-AVP in the nerve fibers around the myenteric plexus of the second portion of the duodenum. It was also found in fibers starting from where the myenteric plexus goes through the layer of muscle fibers, penetrating the submucosa and duodenal mucosa, ending near the capillaries situated along the basal side of the villous epithelium cells. Similar IR-AVP activity was found in cells located in the mucosal epithelium of the duodenum, jejunum, ileum, colon and rectum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The intermediate filament nestin is expressed in neural stem cells, neuroectodermal tumors and various adult tissues. In the gastrointestinal (GI) tract, nestin has been reported in glial cells. Recently, nestin has been reported in interstitial cells of Cajal (ICC) and in gastrointestinal stromal tumors, thought to derive from ICC. Here we investigated nestin immunoreactivity (-ir) in the normal human GI tract, with emphasis on Kit-ir ICC. Two different antibodies specific for human nestin and multicolor high-resolution confocal microscopy were used on material from our human GI tissue collection. The staining pattern of both nestin antibodies was similar. In labeled cells, nestin-ir appeared filamentous. Most intramuscular ICC in antrum and all myenteric ICC (ICC-MP) in small intestine were nestin-ir, while nestin-ir was not detected in deep muscular plexus ICC. In the colon, some - but not all - ICC-MP and most ICC in the circular musculature were nestin-ir while nestin-ir was not detected in ICC in the longitudinal musculature and in the submuscular plexus. In addition, many Kit-negative cells were nestin-ir in all regions. Neurons and smooth muscle cells were consistently nestin negative, while most S100-ir glial cells were nestin-ir. In addition, nestin-ir was also present in some CD34-ir fibroblast-like cells, in endothelium and in other cell types in the mucosa and serosa. In conclusion, nestin-ir is abundantly present in the normal human GI tract. Among a number of cell types, several, but not all, subpopulations of Kit-ir ICC were nestin-ir. The functional significance of nestin in the GI tract remains obscure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号