共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. 总被引:2,自引:0,他引:2
Sonia Do Carmo Diane Séguin Ross Milne Eric Rassart 《The Journal of biological chemistry》2002,277(7):5514-5523
Apolipoprotein D (apoD) and apolipoprotein E (apoE) are co-expressed in many tissues, and, in certain neuropathological situations, their expression appears to be under coordinate regulation. We have previously shown that apoD gene expression in cultured human fibroblasts is up-regulated when the cells undergo growth arrest. Here, we demonstrate that, starting around day 2 of growth arrest, both apoD and apoE mRNA levels increase between 1.5- and 27-fold in other cell types, including mouse primary fibroblasts and fibroblast-like and human astrocytoma cell lines. To understand the regulatory mechanisms of apoD expression, we have used apoD promoter-luciferase reporter constructs to compare gene expression in growing cells and in cells that have undergone growth arrest. Analysis of gene expression in cells transfected with constructs with deletions and mutations in the apoD promoter and constructs with artificial promoters demonstrated that the region between nucleotides -174 and -4 is fully responsible for the basal gene expression, whereas the region from -558 to -179 is implicated in the induction of apoD expression following growth arrest. Within this region, an alternating purine-pyrimidine stretch and a pair of serum-responsive elements (SRE) were found to be major determinants of growth arrest-induced apoD gene expression. Evidence is also presented that SREs in the apoE promoter may contribute to the up-regulation of apoE gene expression following growth arrest. 相似文献
3.
4.
5.
The S promoter of hepatitis B virus is regulated by positive and negative elements. 总被引:12,自引:2,他引:10 下载免费PDF全文
The S promoter, one of the major hepatitis B virus (HBV) promoters, directs the synthesis of mRNA for surface antigen. Transient expression studies revealed that this promoter is highly active in the Alexander hepatoma cell line but not in SK-Hep1 and HeLa cells. We found that a distal element of the promoter (-103 to -48) confers this cell-type-specific behavior through a mechanism in which the promoter activity is repressed in HeLa and SK-Hep1 cells but increased in Alexander cells. By using an inhibitor of protein synthesis, we obtained evidence that a labile repressor(s) confers the negative effect in SK-Hep1 cells. We also found an enhancerlike activity associated with a small DNA segment of the S promoter (-27 to + 30). This proximal element was active in HeLa and SK-Hep1 cells only in the absence of the distal negative element. Finally, analysis of S promoter deletion mutants demonstrated that the -27 to -17 region of the S promoter is crucial for its activity. 相似文献
6.
7.
8.
9.
10.
Negative regulation contributes to tissue specificity of the immunoglobulin heavy-chain enhancer. 总被引:35,自引:20,他引:15 下载免费PDF全文
We have identified in and around the immunoglobulin heavy-chain enhancer two apparently distinct negative regulatory elements which repress immunoglobulin H enhancer, simian virus 40 enhancer, and heterologous promoter activity in fibroblasts but not in myeloma cells. We propose that in nonlymphoid cells, negative regulatory elements prevent activation of the immunoglobulin H enhancer by ubiquitous stimulatory trans-acting factors. 相似文献
11.
Kanegae Y Terashima M Kondo S Fukuda H Maekawa A Pei Z Saito I 《Nucleic acids research》2011,39(2):e7
Tissue-/cancer-specific promoters for use in adenovirus vectors (AdVs) are valuable for elucidating specific gene functions and for use in gene therapy. However, low activity, non-specific expression and size limitations in the vector are always problems. Here, we developed a 'double-unit' AdV containing the Cre gene under the control of an α-fetoprotein promoter near the right end of its genome and bearing a compact 'excisional-expression' unit consisting of a target cDNA 'upstream' of a potent promoter between two loxPs near the left end of its genome. When Cre was expressed, the expression unit was excised as a circular molecule and strongly expressed. Undesired leak expression of Cre during virus preparation was completely suppressed by a dominant-negative Cre and a short-hairpin RNA against Cre. Using this novel construct, a very strict specificity was maintained while achieving a 40- to 90-fold higher expression level, compared with that attainable using a direct specific promoter. Therefore, the 'double-unit' AdV enabled us to produce a tissue-/cancer-specific promoter in an AdV with a high expression level and strict specificity. 相似文献
12.
13.
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates. 相似文献
14.
15.
In vivo activity of the hepatitis B virus core promoter: tissue specificity and temporal regulation. 下载免费PDF全文
The contribution of the hepatitis B virus enhancers I and II in the regulation of the activity of the core and the X promoters was assessed in transgenic mice. Surprisingly, despite the presence of heterologous promoters linked 5' of the X gene, the transgene expression is mostly due to core promoter (Cp) activity present in the X coding sequence. Moreover, the restriction of Cp activity to hepatic tissue required the combined action of both enhancers I and II, whereas the proximity of these two enhancers was insufficient to confer tissue specificity on Xp activity. Furthermore, the liver-specific activity of the Cp was developmentally regulated in an enhancer I-independent manner. 相似文献
16.
Different promoter regions control level and tissue specificity of expression of Agrobacterium rhizogenes rolB gene in plants 总被引:6,自引:0,他引:6
I. Capone M. Cardarelli D. Mariotti M. Pomponi A. De Paolis P. Costantino 《Plant molecular biology》1991,16(3):427-436
Expression of the rolB gene of A. rhizogenes T-DNA triggers root differentiation in transformed plant cells. In order to study the regulation of this morphogenetic gene, the GUS reporter gene was placed under the control of several deleted fragments of the rolB 5 non-coding region: carrot disc transformations and the analysis of transgenic tobacco plants containing these constructions identified the presence of distinct regulatory domains in the rolB promoter. Two regions (located from positions –623 to –471 and from –471 to –341, from the translation start codon) control the level but not the tissue specificity of rolB expression: progressive deletions of the rolB promoter starting from position –1185 to –341, although at different levels, maintained the same pattern of GUS expression — maximal in root meristems and less pronounced in the vascular tissue of aerial organs. Further deletion of 35 bp, from –341 to –306, drastically affected tissue specificity: GUS activity was still clearly detectable in the vascular tissue of the aerial organs while expression in the root meristem was totally suppressed. Analysis of transgenic embryos and seedlings confirmed that distinct promoter domains are responsible for meristematic (root) and differentiated (vascular) expression of rolB. Finally, we present data concerning the effects of plant hormones on the expression of rolB-GUS constructions. 相似文献
17.
Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. 总被引:4,自引:2,他引:2 下载免费PDF全文
A new regulatory element necessary for the correct temporal expression of the period (per) gene was identified by monitoring real-time per expression in living individual flies carrying two different period-luciferase transgenes. luciferase RNA driven from only the per promoter was not sufficient to replicate the normal pattern of per RNA cycling; however, a per-luc fusion RNA driven from a transgene containing additional per sequences cycled identically to endogenous per. The results indicate the existence of at least two circadian-regulated elements--one within the promoter and one within the transcribed portion of the per gene. Phase and amplitude analysis of both per-luc transgenes revealed that normal per expression requires the regulation of these elements at distinct phases and suggests a mechanism by which biological clocks sustain high-amplitude feedback oscillations. 相似文献
18.
Epitope expression of rat apolipoprotein B on lipoproteins was investigated with the help of six monoclonal antibodies produced from mice. Through a variety of techniques, which include cotitrations, ELISAs and quantitative immunoadsorption precipitation, we concluded that the six monoclonal antibodies recognize five different epitopes. LRB 110 and LRB 260 recognize epitopes that may be overlapping. LRB 240 and LRB 250 recognize epitopes that are preferentially expressed in triacylglycerol-rich particles. LRB 220 recognizes an epitope that is expressed by all apolipoprotein-B-containing lipoproteins. We have also determined that apolipoprotein B epitope expression in rat lipoproteins is very similar to its human counterpart. Both rat and human apolipoprotein B epitope expression on lipoproteins showed heterogeneities even in homologous lipoprotein preparations. We concluded that a variety of techniques are necessary to fully characterize monoclonal antibodies to apolipoproteins. The possible implications of epitope expression in pathophysiology are also discussed. 相似文献
19.
20.
Huang ZH Luque RM Kineman RD Mazzone T 《American journal of physiology. Endocrinology and metabolism》2007,293(1):E203-E209
Apolipoprotein E (apoE) is a multifunctional protein that is highly expressed in human and murine adipose tissue. Endogenous adipocyte apoE expression influences adipocyte triglyceride turnover and modulates the expression of genes involved in lipid synthesis and oxidation. We now demonstrate the regulation of adipose tissue apoE expression by nutritional status in lean and obese mice. Obesity induced by high-fat diet, or by hyperphagia in ob/ob mice, produces significant reduction of adipose tissue apoE expression at the protein and messenger RNA level. Fasting in C57BL/6J mice for 24 h significantly increased apoE protein and messenger RNA levels. In ob/ob mice, transplantation of adipose tissue from lean littermate controls to restore circulating leptin levels produced significant weight loss over 12 wk and also produced an increase in adipose tissue apoE expression. The increase in adipose tissue apoE expression in this model, however, did not require leptin. Adipose tissue apoE was also significantly increased in ob/ob mice after a 48-h fast or after 7 days of caloric restriction. In summary, obesity suppresses adipose tissue apoE expression, whereas fasting or weight loss increases it. From our previous observations, these changes in adipose tissue apoE expression will have significant impact on adipose tissue lipid flux and lipoprotein metabolism. Furthermore, these results suggest adipose tissue apoE participates in defending adipose tissue and organismal energy homeostasis in response to nutritional perturbation. 相似文献