首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

3.
The trans-activation response element (TAR) of human immunodeficiency virus type 1 is a structured RNA consisting of the first 60 nucleotides of all human immunodeficiency virus type 1 RNAs. Computer analyses and limited structural analyses indicated that TAR consists of a stem-bulge-loop structure. Mutational analyses showed that sequences in the bulge are required for Tat binding, whereas sequences in both the bulge and the loop are required for trans activation. In this study, we probed the structures of TAR and various mutants of TAR with chemical probes and RNases and used these methods to footprint a Tat peptide on TAR. Our data show that the structure of wild-type TAR is different from previously published models. The bulge, a Tat-binding site, consists of four nucleotides. The loop is structured, rather than simply single stranded, in a fashion reminiscent of the structures of the tetraloop 5'-UUCG-3' and the GNRA loop (C. Cheong, G. Varani, and I. Tinoco, Jr., Nature [London] 346:680-682, 1990; H.A. Heus and A. Pardi, Science 253:191-193, 1991). RNA footprint data indicate that three bases in the bulge are protected and suggest that a conformational change occurs upon Tat binding.  相似文献   

4.
Viruses are replication competent genomes which are relatively gene-poor. Even the largest viruses (i.e. Herpesviruses) encode only slightly >200 open reading frames (ORFs). However, because viruses replicate obligatorily inside cells, and considering that evolution may be driven by a principle of economy of scale, it is reasonable to surmise that many viruses have evolved the ability to co-opt cell-encoded proteins to provide needed surrogate functions. An in silico survey of viral sequence databases reveals that most positive-strand and double-stranded RNA viruses have ORFs for RNA helicases. On the other hand, the genomes of retroviruses are devoid of virally-encoded helicase. Here, we review in brief the notion that the human immunodeficiency virus (HIV-1) has adopted the ability to use one or more cellular RNA helicases for its replicative life cycle.  相似文献   

5.
Dimerization of HIV-1 genomic RNA is an essential step of the viral cycle, initiated at a conserved stem-loop structure which forms a 'kissing complex' involving loop-loop interactions (dimerization initiation site, DIS). A 19mer RNA oligonucleotide (DIS-19) has been synthesized which forms a stable symmetrical dimer in solution at millimolar concentrations. Dimerization does not depend on addition of Mg2+. RNA ligation experiments unambiguously indicate that the formed dimer is a stable kissing complex under the NMR experimental conditions.1H NMR resonance assignments were obtained for DIS-19 at 290 K and pH 6.5. Analysis of the pattern of NOE connectivities reveals that the helix formed by loop-loop base pairing is stacked onto the two terminal stems. Non-canonical base pairs between two essential and conserved adenines are found at the junctions between the two intramolecular and the single intramolecular helices.  相似文献   

6.
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.  相似文献   

7.
8.
Although their genomes cannot be aligned at the nucleotide level, the HIV-1/SIVcpz and the HIV-2/SIVsm viruses are closely related lentiviruses that contain homologous functional and structural RNA elements in their 5'-untranslated regions. In both groups, the domains containing the trans-activating region, the 5'-copy of the polyadenylation signal, and the primer binding site (PBS) are followed by a short stem-loop (SL1) containing a six-nucleotide self-complementary sequence in the loop, flanked by unpaired purines. In HIV-1, SL1 is involved in the dimerization of the viral RNA, in vitro and in vivo. Here, we tested whether SL1 has the same function in HIV-2 and SIVsm RNA. Surprisingly, we found that SL1 is neither required nor involved in the dimerization of HIV-2 and SIV RNA. We identified the NarI sequence located in the PBS as the main site of HIV-2 RNA dimerization. cis and trans complementation of point mutations indicated that this self-complementary sequence forms symmetrical intermolecular interactions in the RNA dimer and suggested that HIV-2 and SIV RNA dimerization proceeds through a kissing loop mechanism, as previously shown for HIV-1. Furthermore, annealing of tRNA(3)(Lys) to the PBS strongly inhibited in vitro RNA dimerization, indicating that, in vivo, the intermolecular interaction involving the NarI sequence must be dissociated to allow annealing of the primer tRNA.  相似文献   

9.
Dimerization of the genomic RNA is an important step of the HIV-1 replication cycle. The Dimerization Initiation Site (DIS) promotes dimerization of the viral genome by forming a loop-loop complex between two DIS hairpins. Crystal structures of the DIS loop-loop complex revealed an unexpected and strong similitude with the bacterial 16S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics. As a consequence of these structural and sequence similarities, the HIV-1 DIS also binds some aminoglycosides, not only in vitro, but also ex vivo, in lymphoid cells and in viral particles. Crystal structures of the DIS loop-loop in complex with several aminoglycoside antibiotics provide a detailed-view of the DIS/drug interaction and reveal some hints about possible modifications to increase the drug affinity and/or specificity.  相似文献   

10.
11.
12.
13.
Dimer formation of HIV-1 genomic RNA through its dimerization initiation site (DIS) is crucial to maintaining infectivity. Two types of dimers, the initially generated kissing-loop dimer and the subsequent product of the extended-duplex dimer, are formed in the stem-bulge-stem region with a loop including a self-complementary sequence. NMR chemical shift analysis of a 39mer RNA corresponding to DIS, DIS39, in the kissing-loop and extended-duplex dimers revealed that the three dimensional structures of the stem-bulge-stem region are extremely similar between the two types of dimers. Therefore, we designed two shorter RNA molecules, loop25 and bulge34, corresponding to the loop-stem region and the stem-bulge-stem region of DIS39, respectively. Based upon the chemical shift analysis, the conformation of the loop region of loop25 is identical to that of DIS39 for each of the two types of dimers. The conformation of bulge34 was also found to be the same as that of the corresponding region of DIS39. Thus, we determined the solution structures of loop25 in each of the two types of dimers as well as that of bulge34. Finally, the solution structures of DIS39 in the kissing-loop and extended-duplex dimers were determined by combining the parts of the structures. The solution structures of the two types of dimers were similar to each other in general with a difference found only in the A16 residue. The elucidation of the structures of DIS39 is important to understanding the molecular mechanism of the conformational dynamics of viral RNA molecules.  相似文献   

14.
The crystal structure of subtype-B HIV-1 genomic RNA Dimerization Initiation Site duplex revealed chain cleavage at a specific position resulting in 3′-phosphate and 5′-hydroxyl termini. A crystallographic analysis showed that Ba2+, Mn2+, Co2+ and Zn2+ bind specifically on a guanine base close to the cleaved position. The crystal structures also point to a necessary conformational change to induce an ‘in-line’ geometry at the cleavage site. In solution, divalent cations increased the rate of cleavage with pH/pKa compensation, indicating that a cation-bound hydroxide anion is responsible for the cleavage. We propose a ‘Trojan horse’ mechanism, possibly of general interest, wherein a doubly charged cation hosted near the cleavage site as a ‘harmless’ species is further transformed in situ into an ‘aggressive’ species carrying a hydroxide anion.  相似文献   

15.

Background

Developing a quantitative understanding of viral kinetics is useful for determining the pathogenesis and transmissibility of the virus, predicting the course of disease, and evaluating the effects of antiviral therapy. The availability of data in clinical, animal, and cell culture studies, however, has been quite limited. Many studies of virus infection kinetics have been based solely on measures of total or infectious virus count. Here, we introduce a new mathematical model which tracks both infectious and total viral load, as well as the fraction of infected and uninfected cells within a cell culture, and apply it to analyze time-course data of an SHIV infection in vitro.

Results

We infected HSC-F cells with SHIV-KS661 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for nine days. The experiments were repeated at four different MOIs, and the model was fitted to the full dataset simultaneously. Our analysis allowed us to extract an infected cell half-life of 14.1 h, a half-life of SHIV-KS661 infectiousness of 17.9 h, a virus burst size of 22.1 thousand RNA copies or 0.19 TCID50, and a basic reproductive number of 62.8. Furthermore, we calculated that SHIV-KS661 virus-infected cells produce at least 1 infectious virion for every 350 virions produced.

Conclusions

Our method, combining in vitro experiments and a mathematical model, provides detailed quantitative insights into the kinetics of the SHIV infection which could be used to significantly improve the understanding of SHIV and HIV-1 pathogenesis. The method could also be applied to other viral infections and used to improve the in vitro determination of the effect and efficacy of antiviral compounds.  相似文献   

16.
Mixmer oligonucleotides consisting of residues of both 2'-O-methylnucleosides (OMe) and locked nucleic acids (LNA) were designed targeting two stem-loops in the 5'-UTR of HIV-1 RNA, the transactivation response region (TAR), which is the site of binding of the Tat protein, and the SL3 loop, which is the primary packaging element that binds the Gag polyprotein. These oligonucleotides were found to inhibit syncitia formation dose- and sequence-dependently when delivered to HeLa T4 LTR beta-Gal cells and subsequently infected with HIV-1.  相似文献   

17.
Clinical usage of lentiviral vectors is now established and increasing but remains constrained by vector titer with RNA packaging being a limiting factor. Lentiviral vector RNA is packaged through specific recognition of the packaging signal on the RNA by the viral structural protein Gag. We investigated structurally informed modifications of the 5′ leader and gag RNA sequences in which the extended packaging signal lies, to attempt to enhance the packaging process by facilitating vector RNA dimerization, a process closely linked to packaging. We used in-gel SHAPE to study the structures of these mutants in an attempt to derive structure-function correlations that could inform optimized vector RNA design. In-gel SHAPE of both dimeric and monomeric species of RNA revealed a previously unreported direct interaction between the U5 region of the HIV-1 leader and the downstream gag sequences. Our data suggest a structural equilibrium exists in the dimeric viral RNA between a metastable structure that includes a U5–gag interaction and a more stable structure with a U5–AUG duplex. Our data provide clarification for the previously unexplained requirement for the 5′ region of gag in enhancing genomic RNA packaging and provide a basis for design of optimized HIV-1 based vectors.  相似文献   

18.
19.
We describe the crystal structures of the RNA dimerization initiation sites (DIS) of HIV-1 subtypes A and B. Both molecules adopt a hairpin conformation, with loop sequences consisting of 272-AGGUGCACA-280 and 272-AAGCGCGCA-280, respectively. This includes a six-base self-complementary stretch (underlined) that allows homodimerization through the formation of a loop-loop, or 'kissing-loop', complex. The DISs for the two sequences have identical conformations, and the two interacting hairpins show a perfect coaxial alignment. The conserved purines, A272 and R273, are stacked in a bulged-out conformation and symmetrically join the upward and downward strands of each hairpin by crossing the helix major groove. There is good agreement between these structures and previous results from chemical probing in solution, as well as with differences in magnesium dependence for dimerization. The overall shape of the kissing-loop complex is very similar to that of the previously determined subtype A DIS duplex form. Unexpectedly, the purine R273 is the only base seen at a different position and is responsible for the difference in topology between the two forms. We propose that the transition from kissing-loop duplex could occur by a recombination mechanism based on symmetrical chain cleavage at R273 of each hairpin and subsequent cross-religation, rather than by base-pair melting and subsequent reannealing.  相似文献   

20.
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号