首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

2.
The results reported here show that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) and concanavalin A (Con A) may occur with a stimulus response coupling sequence that bypasses the activation of phosphoinositide hydrolysis, monitored as accumulation of inositol phosphates and glycerophosphoinositol, and the increase in [Ca2+]i. In fact: in Ca2+-depleted neutrophils FMLP and Con A do not induce the respiratory burst and the activation of phosphoinositide hydrolysis. The addition of Ca2+ restores both the respiratory and the phosphoinositide responses; the double treatment of Ca2+-depleted neutrophils with FMLP and Con A in sequence, before FMLP and then Con A and vice versa, or simultaneously, restores the capacity to respond to the second stimulus with the respiratory burst but not with the activation of phosphoinositide hydrolysis. These findings suggest that, for the activation of the NADPH oxidase by FMLP and by Con A: the transduction pathway including the stimulation of phosphoinositide turnover, the Ca2+ changes and the activity of the protein kinase C is not required, or is not the unique, and one stimulus may trigger more than one transduction pathway. Possible transduction pathways are discussed.  相似文献   

3.
Treatment of thymic lymphocytes with the mitogenic lectin concanavalin A (ConA) increases the intracellular free Ca2+ concentration and stimulates phosphoinositide turnover. ConA also induced a rapid, amiloride-sensitive, Na+-dependent increase in cytosolic pH of 0.13 +/- 0.01, indicative of stimulation of the Na+/H+ antiport. To investigate the mechanism underlying activation of Na+/H+ exchange by ConA, the intracellular free Ca2+ concentration changes induced by this lectin were precluded by loading the cells with Ca2+-buffering agents and suspension in Ca2+-free media. Under these conditions, the ConA-induced cytoplasmic alkalinization proceeded normally. Two approaches were used to assess the role of protein kinase C. First, this enzyme was inhibited by the addition of 1-(5-isoquinolinysulfonyl)-2-methylpiperazine. In the presence of this potent antagonist, stimulation of the antiport by 12-O-tetradecanoylphorbol-13-acetate was greatly inhibited. In contrast, stimulation by ConA was unaffected. Second, protein kinase C was depleted by overnight incubation with phorbol esters. Following this treatment, Na+/H+ exchange was no longer activated by 12-O-tetradecanoyl-13-acetate, but was still stimulated by ConA. These data suggest that a Ca2+- and protein kinase C-independent mechanisms mediates the activation of Na+/H+ exchange by ConA. The possible role of GTP-binding proteins in the activation was also studied. The antiport was not stimulated by either fluoroaluminate or vanadate. Moreover, pretreatment with pertussis toxin failed to inhibit the ConA-induced cytoplasmic alkalinization. In contrast, preincubation with cholera toxin partially inhibited activation. Under these conditions, cholera toxin significantly elevated intracellular cAMP levels. Inhibition was also observed in cells treated with forskolin at concentrations that increased [cAMP]. The data suggest that a novel cAMP-sensitive signaling mechanism not involving Ca2+ and protein kinase C is involved in the stimulation of Na+/H+ exchange by mitogens in T lymphocytes.  相似文献   

4.
Neurotransmission, synaptic plasticity, and maintenance of membrane excitability require high mitochondrial activity in neurosecretory cells. Using a fluorescence-based intracellular O2 sensing technique, we investigated the respiration of differentiated PC12 cells upon depolarization with 100 mm K+. Single cell confocal analysis identified a significant depolarization of the plasma membrane potential and a relatively minor depolarization of the mitochondrial membrane potential following K+ exposure. We observed a two-phase respiratory response: a first intense spike lasting approximately 10 min, during which average intracellular O2 was reduced from 85-90% of air saturation to 55-65%, followed by a second wave of smaller amplitude and longer duration. The fast rise in O2 consumption coincided with a transient increase in cellular ATP by approximately 60%, which was provided largely by oxidative phosphorylation and by glycolysis. The increase of respiration was orchestrated mainly by Ca2+ release from the endoplasmic reticulum, whereas the influx of extracellular Ca2+ contributed approximately 20%. Depletion of Ca2+ stores by ryanodine, thapsigargin, and 4-chloro-m-cresol reduced the amplitude of respiratory spike by 45, 63, and 71%, respectively, whereas chelation of intracellular Ca2+ abolished the response. Uncoupling of the mitochondria with the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone amplified the responses to K+; elevated respiration induced a profound deoxygenation without increasing the cellular ATP levels reduced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Cleavage of synaptobrevin 2 by tetanus toxin, known to reduce neurotransmission, did not affect the respiratory response to K+, whereas the general excitability of d PC12 cells increased.  相似文献   

5.
Evidences have been provided in our laboratory that in neutrophils different signal transduction sequences for the activation of O2(-)-forming NADPH oxidase can be triggered by the same stimulus (Biochem. Biophys. Res. Commun. 1986, 135, 556-565; 1986, 135, 785-794; 1986, 140, 1-11). The results presented here show that the transduction sequence triggered by fluoride via dissociation of G-proteins and involving messengers produced by stimulation of phosphoinositide turnover, Ca2+ changes and translocation of protein kinase C from the cytosol to the plasmamembrane, can be bypassed when a primed state of neutrophils is previously induced. In fact: i) fluoride causes a pertussis toxin insensitive and H-7 sensitive respiratory burst in human neutrophils, which is linked to the activation of hydrolysis of PIP2, rise in [Ca2+]1 and translocation of PKC. In Ca2+-depleted neutrophils these responses to fluoride do not occur and are restored by addition of CaCl2. ii) The pretreatment of Ca2+-depleted unresponsive neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase by fluoride but not the turnover of phosphoinositides and PKC translocation. The nature of the alternative transduction sequence, the reactions different from phospholipase C activated by G-protein for the alternative sequence and the role of these discrete pathways for NADPH oxidase activation are discussed.  相似文献   

6.
The coupling of the group I metabotropic glutamate receptors, mGlu1a and mGlu5a, to the extracellular signal-regulated protein kinase (ERK) pathway has been studied in Chinese hamster ovary cell-lines where receptor expression is under inducible control. Both mGlu receptors stimulated comparable, robust and agonist concentration-dependent ERK activations in the CHO cell-lines. The mGlu1a receptor-mediated ERK response was almost completely attenuated by pertussis toxin (PTx) pretreatment, whereas the mGlu5a-ERK response, and the phosphoinositide response to activation of either receptor, was PTx-insensitive. mGlu1a and mGlu5a receptor coupling to ERK occurred via mechanisms independent of phosphoinositide 3-kinase activity and intracellular and/or extracellular Ca2+ concentration. While acute treatment with a protein kinase C (PKC) inhibitor did not attenuate agonist-stimulated ERK activation, down-regulation of PKCs by phorbol ester treatment for 24 h did attenuate both mGlu1a and mGlu5a receptor-mediated responses. Further, inhibition of Src non-receptor tyrosine kinase activity by PP1 attenuated the ERK response generated by both receptor subtypes, but only mGlu1a receptor-ERK activation was attenuated by PDGF receptor tyrosine kinase inhibitor AG1296. These findings demonstrate that, although expressed in a common cell background, these closely related mGlu receptors utilize different G proteins to cause ERK activation and may recruit different tyrosine kinases to facilitate this response.  相似文献   

7.
We have studied the effects of prostaglandin E2 (PGE2) and cholera toxin, two modulators of adenylyl cyclase, and 8-bromo cAMP (8-BrcAMP) on various parameters of lymphocyte activation using the human T cell line Jurkat. Our results show that PGE2 and cholera toxin inhibit, in a dose-related manner, the phytohemagglutinin (PHA)-dependent production of interleukin 2 by these cells. The data are consistent with the interpretation that the inhibition is due to an intracellular increase in cAMP, since the metabolically stable 8-BrcAMP analog produced the same inhibitory effect. However, PGE2 or 8-BrcAMP did not interfere with the PHA-induced elevation in the cytosolic concentration of Ca2+, suggesting that changes in the intracellular concentration of cAMP does not affect the internal release or the influx of Ca2+. In contrast, cholera toxin prevented the Ca2+ response of Jurkat cells to PHA. We studied the effects of PGE2, cholera toxin, and 8-BrcAMP on the amplitude of the K+ outward current using the patch clamp technique in the whole cell configuration. Results showed that PGE2, 8-BrcAMP, and cholera toxin inhibited K+ channel activity. For instance, the amplitude of the outward K+ current was reduced to 43 +/- 19%, 50 +/- 26%, and 46 +/- 16% of control values in the case of cells perfused in the presence of PGE2, 8-BrcAMP, and cholera toxin, respectively. Blocking K+ channels with tetraethylammonium ions did not prevent the characteristic Jurkat Ca2+ response to PHA. Our observations that cAMP inhibits K+ channel activity in a T cell line provide an additional explanation for its reported inhibition of lymphocyte activation. Increasing the intracellular concentration of cAMP may result in reduction of K+ movements and in negative modulation of signal transduction via G-proteins as previously suggested. These two effects could act in synergy to impair signal transduction.  相似文献   

8.
The role of different Ca2+ sources in the activation of the NADPH oxidase was investigated in human neutrophil granulocytes. Selective depletion of the stimulus-responsive intracellular Ca2+ -pool and the consequent opening of the store-dependent Ca2+ channel of the plasma membrane was achieved with thapsigargin, an inhibitor of microsomal Ca2+ -ATPase. Low concentration (10-100 nM) of thapsigargin did not induce any O2*- -production, indicating that elevation of [Ca2+]ic to similar level and probably via similar route as following stimulation of chemotactic receptors, by itself is not sufficient to activate the NADPH oxidase. In significantly higher concentration (1-10 microM) thapsigargin did induce O2*- -generation but this effect was not the result of elevation of [Ca2+]ic. In the absence of external Ca2+ a gradual decrease of the responsive Ca2+ pool was accompanied by a gradual decrease of the rate and duration of the respiratory response stimulated by formyl-methionyl-leucyl-phenylalanin. Maximal extent of receptor-initiated O2*- -production could only be obtained when the intracellular [Ca2+] was higher than the resting level. Under this condition Ca2+ originating from intracellular or external source was equally effective in supporting the biological response.  相似文献   

9.
The contraction of hepatic endothelial cell fenestrae after exposure to serotonin is associated with an increase in intracellular Ca2+ which is derived from extracellular Ca2+, is inhibited by pertussis toxin and is not associated with activation of phosphoinositol turnover or cAMP. Using cell-attached and excised patches in primary cultures of rat hepatic endothelial cells, we identified a serotonin-activated channel with conductance of 26.4+/-2.3 pS. The channel was also permeant to Na+, K+ and Ca++ but not to anions. In cell-attached patch recordings, addition of serotonin to the bath significantly increased channel activity with Ca2+ or Na+ as the charge-carrying ions. This channel provides a mechanism whereby serotonin can raise the cytosolic Ca2+ concentration in hepatic endothelial cells.  相似文献   

10.
Treatment of cultured granulosa cells with PLC or GnRH stimulated the rapid generation of DAG and phosphoinositide turnover. The PKC activators PLC (3 mU/ml) and TPA (10(-7)M) or the decapeptide GnRH (10(-6)M) elicited similar inhibitory responses on FSH or cAMP stimulated granulosa cell steroidogenesis. Mobilization of intracellular Ca2+ with A23187 (10(-8)M) was followed by a slight increase in the steroidogenic activity of cultured granulosa cells, whereas elevation of extracellular K+ (50 mM) largely augmented the steroid biosynthetic activity of the granulosa cells. These results suggest that the inhibitory effect of GnRH on granulosa cell steroidogenesis is mediated by generation of DAG, rather than by increases in intracellular Ca2+ concentrations.  相似文献   

11.
Evidences have been provided by many laboratories that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) is strictly linked to a transduction pathway that involves the stimulation, via GTP binding protein, of the phosphoinositide turnover and the increase in [Ca2+]i. The results presented in this paper demonstrate that FMLP can activate the NADPH oxidase by triggering a transduction pathway completely independent of phosphoinositide turnover and Ca2+ changes. In fact: i) Ca2+-depleted neutrophils do not respond to FMLP with the activation of phosphoinositide hydrolysis and NADPH oxidase. Both the responses are restored by the addition of exogenous Ca2+. ii) In Ca2+-depleted neutrophils phorbol-myristate-acetate (PMA) activates the NADPH oxidase. iii) The pretreatment of Ca2+-depleted neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase but not of the turnover of phosphoinositides by FMLP. This priming effect of PMA and the role of this phosphoinositide and Ca2+-independent pathway for the stimulation of the NADPH oxidase by receptors mediated stimuli are discussed.  相似文献   

12.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

13.
Numerous hormones are known to rapidly activate polyphosphoinositide turnover in target cells by promoting phosphodiesteratic cleavage of the phospholipids; however, little is known about the enzymology of receptor-mediated phosphoinositide breakdown. In the present study, thyrotropin-releasing hormone (TRH) stimulation of polyphosphoinositide turnover has been characterized in electrically permeabilized, [3H]myoinositol-labeled GH3 cells. The permeable cells allow the influence of small molecular weight (Mr less than or equal to 1000) cofactors to be determined. We present evidence for the following: 1) TRH stimulates inositol phosphate generation in permeable cells; 2) optimal hormone-stimulated inositol phosphate generation requires Mg2+, ATP, and Ca2+; 3) Mg2+ and ATP requirements reflect polyphosphoinositide kinase reactions; 4) in the absence of MgATP, TRH stimulates the phosphodiesteratic breakdown of pre-existing polyphosphoinositides in a reaction which requires only low Ca2+ (10(-7) M); 5) hormone activation is potentiated in the presence of the stable guanine nucleotide, GTP gamma S; neither TRH-stimulated nor GTP gamma S-potentiated hydrolysis is inhibited by cholera or pertussis toxin treatment. These results demonstrate that hormone-induced phospholipid hydrolysis involves activation of a phosphoinositide phosphodiesterase; activation results in lowering the Ca2+ requirement of the phosphodiesterase such that maximal activity is observed at Ca2+ levels characteristic of a resting cell (10(-7) M). Furthermore, TRH regulation of polyphosphoinositide hydrolysis is modulated by guanine nucleotides; however, nucleotide regulation appears to involve a GTP-binding factor (Np) other than Ns or Ni.  相似文献   

14.
The relationship between calcium mobilization and phospholipase D (PLD) activation in response to E-series prostaglandins (PGEs) was investigated in human erythroleukemia cells. Intracellular free Ca2+ concentration ([Ca2+]i) was increased by PGE1 and PGE2 over the same concentration range at which PLD activation was seen. Pretreatment of cells with pertussis toxin greatly inhibited the PGE-stimulated increase in [Ca2+]i, implying that a G protein participates in the PGE receptor signaling process. The peak level and also the plateau level of Ca2+ mobilization stimulated by these prostaglandins were markedly decreased in Ca(2+)-depleted medium, indicating that both extracellular and intracellular Ca2+ stores contribute to the changes in [Ca2+]i. Likewise, activation of PLD by PGE1 and PGE2 was abolished by pertussis toxin pretreatment or incubation in Ca(2+)-depleted medium. U73122, a putative phospholipase C inhibitor, blocked both Ca2+ mobilization and PLD activation in PGE-stimulated cells. Furthermore, the intracellular loading of BAPTA, a Ca2+ chelator, inhibited both Ca2+ mobilization and PLD activation by PGE1 and PGE2 in a similar dose-dependent manner. Simultaneous measurement of [Ca2+]i and PLD activity in the same cell samples indicated that PLD activity increases as a function of [Ca2+]i in a similar fashion in cells stimulated either by PGEs or by the calcium ionophore ionomycin. Taken together, these findings suggest that a rise in [Ca2+]i is necessary for PGE-stimulated PLD activity in human erythroleukemia cells.  相似文献   

15.
We compared the thrombin-activated responses in human umbilical vein endothelial cells (HUVECs) and a HUVEC-derived cell line, ECV304. Thrombin induced a 40-50% decrease in transendothelial monolayer electrical resistance and a twofold increase in 125I-albumin permeability in HUVECs, whereas it failed to alter the endothelial barrier function in ECV304 cells. Thrombin produced a brisk intracellular Ca2+ concentration transient and phosphorylation of 20-kDa myosin light chain in HUVECs but not in ECV304 cells. Thrombin-induced phosphoinositide hydrolysis was comparable in ECV304 cells and HUVECs, indicating the activation of thrombin receptors in both cell types. La3+ reduced both the thrombin-induced decrease in endothelial monolayer electrical resistance and the increase in 125I-albumin permeability in HUVECs. Because the absence of Ca2+ signaling could explain the impairment in the permeability response in ECV304 cells, we studied the effect of increasing intracellular Ca2+ concentration in ECV304 cells with thapsigargin. Exposure of ECV304 cells to thapsigargin caused decreased endothelial monolayer electrical resistance and increased 125I-albumin permeability. These results indicate that Ca2+ influx and activation of Ca2+-dependent signaling pathways are important determinants of the thrombin-induced increase in endothelial permeability.  相似文献   

16.
The murine T lymphoma line, LBRM-33 1A5, requires synergistic signals delivered by phytohemagglutinin (PHA) and interleukin 1 (IL1) for activation to high level interleukin 2 production. The activation signals provided by PHA and IL1 were replaced by the Ca2+ ionophore, ionomycin, and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), respectively. These observations supported a two-signal model for T cell activation involving increases in intracellular Ca2+ concentration ([Ca2+]i) (signal 1) and activation of protein kinase C (signal 2) as necessary and sufficient events. However, biochemical analyses revealed that additional signals were involved in the activation of LBRM-33 cells by both receptor-dependent and -independent mediators. Both signal 1-type mediators, PHA and ionomycin, exerted pleiotropic effects at the concentrations required for synergy with signal 2-type mediators (IL1, TPA). Within 1-2 min of addition, PHA stimulated phospholipid turnover, including hydrolysis of phosphatidylinositol 4,5-bisphosphate, Ca2+ mobilization, and protein kinase C activation. The [Ca2+]i increase induced by PHA was due to influx from both intracellular and extracellular Ca2+ pools. Similarly, ionomycin increased phospholipid turnover, [Ca2+]i, and directly affected protein kinase C activity in LBRM-33 cells. In contrast, the signal 2-type mediators, TPA and IL1, appeared to act by distinct intracellular mechanisms. TPA induced a protracted association of cellular protein kinase C with the plasma membrane, consistent with the two-signal activation model. Furthermore, acute TPA treatment inhibited PHA-stimulated inositol phosphate release and Ca2+ mobilization, suggesting that this mediator partially antagonized signal 1 delivery. IL1, in contrast, neither activated protein kinase C directly nor did it positively modulate the coupling of signal 1-type mediators to [Ca2+]i or protein kinase C via the phosphoinositide pathway. The intracellular signal delivered by IL1 is, therefore, generated through a mechanism distinct from or distal to the activation of protein kinase C. These studies indicate that the two-signal hypothesis, in its simplest form, is inadequate to explain the signals required for the initiation of IL1-dependent T cell activation.  相似文献   

17.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

18.
Stimulation of rat Kupffer cells in primary culture with platelet-activating factor (PAF) caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate with a concomitant increase in the levels of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,4-bisphosphate. This phospholipase C-mediated hydrolysis of polyphosphoinositides was independent of extracellular Ca2+ but was inhibited by the intracellular Ca2+ antagonist TMB-8. A second slower response to PAF was characterized by deacylation of PI leading to the accumulation of glycerophosphoinositol (GPI). PAF-induced GPI synthesis was not inhibited by TMB-8. These effects of PAF were accompanied by initial transient mobilization of Ca2+ from intracellular stores followed by a rather slow influx of Ca2+ from the extracellular medium. PAF-stimulated deacylation and phosphodiesteric hydrolysis of inositol lipids were differentially affected by cholera toxin and pertussis toxin. Pretreatment of the Kupffer cells with either of these toxins caused inhibition of phospholipase C activity. Pertussis toxin also inhibited PAF-stimulated deacylation. However, cholera toxin itself stimulated GPI release and addition of PAF to the cholera toxin-treated cells caused a further increase in GPI release. Phorbol ester inhibited PAF-induced phosphodiesteric hydrolysis of phosphoinositides, but not deacylation. PAF-induced metabolism of phosphoinositides was inhibited by the PAF antagonist, U66985. These results suggest that PAF-induced phosphodiesteric hydrolysis and deacylation of inositol phospholipids are regulated via distinct mechanisms involving activation of separate G-proteins in rat Kupffer cells. Also the regulation of phosphoinositide metabolism by Ca2+ mobilization from two separate Ca2+ pools is indicated by this study.  相似文献   

19.
Low concentrations of FMLP, partially purified rabbit C5a, leukotriene B4 and platelet activating factor induced a rapid rise of intracellular free Ca2+ in rabbit polymorphonuclear leukocytes. However, the four factors differed markedly in their ability to activate the respiratory burst. The peptides FMLP and C5a induced a single, strong chemiluminescence response whereas the lipids leukotriene B4 and platelet activating factor induced a markedly less intense response with a two-peak profile. Respiratory burst activation by the peptides was dependent on extracellular Ca2+ whereas the lipids required both Mg2+ and Ca2+. The results indicate that mobilization of intracellular Ca2+ is insufficient by itself to induce respiratory burst activation and that the intracellular pathways leading to activation differ depending on the nature of the stimulus.  相似文献   

20.
M3 muscarinic receptors expressed on SH-SY5Y human neuroblastoma cells are linked to phosphoinositide turnover and rises in [Ca2+]i. The rise in [Ca2+]i is biphasic with the peak phase being due to release from an intracellular Ins(1,4,5)P3-sensitive site and the plateau phase being due to Ca2+ entry across the plasma membrane. Ca2+ entry does not appear to involve voltage sensitive Ca2+ channels, a pertussis toxin sensitive G-protein-operated Ca2+ channel or Ins(1,4,5)P3/Ins(1,3,4,5)P4-operated Ca2+ channel. We suggest that carbachol-stimulated Ca2+ entry in SH-SY5Y human neuroblastoma cells occurs via receptor operated Ca2+ channels and through capacitive refilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号