首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Drosophila, the morphological diversity is generated by the activation of different sets of active developmental regulatory genes in the different body subdomains. Here, we have investigated the role of the homothorax/extradenticle (hth/exd) gene pair in the elaboration of the pattern of the anterior mesothorax (notum). These two genes are active in the same regions and behave as a single functional unit. We find that their original uniform expression in the notum is downregulated during development and becomes restricted to two distinct, alpha and betasubdomains. This modulation appears to be important for the formation of distinct patterns in the two subdomains. The regulation of hth/exd expression is achieved by the combined repressing functions of the Pax gene eyegone (eyg) and of the Dpp pathway. hth/exd is repressed in the body regions where eyg is active and that also contain high levels of Dpp activity. We also present evidence for a molecular interaction between the Hth and the Eyg proteins that may be important for the patterning of the alpha subdomain.  相似文献   

2.
3.
The growth and patterning of Drosophila wing and notum primordia depend on their subdivision into progressively smaller domains by secreted signals that emanate from localized sources termed organizers. While the mechanisms that organize the wing primordium have been studied extensively, those that organize the notum are incompletely understood. The genes odd-skipped (odd), drumstick (drm), sob, and bowl comprise the odd-skipped family of C(2)H(2) zinc finger genes, which has been implicated in notum growth and patterning. Here we show that drm, Bowl, and eyegone (eyg), a gene required for notum patterning, accumulate in nested domains in the anterior notum. Ectopic drm organized the nested expression of these anterior notum genes and downregulated the expression of posterior notum genes. The cell-autonomous induction of Bowl and Eyg required bowl, while the non-autonomous effects were independent of bowl. The homeodomain protein Bar is expressed along the anterior border of the notum adjacent to cells expressing the Notch (N) ligand Delta (Dl). bowl was required to promote Bar and repress Dl expression to pattern the anterior notum in a cell-autonomous manner, while lines acted antagonistically to bowl posterior to the Bowl domain. Our data suggest that the odd-skipped genes act at the anterior notum border to organize the notum anterior-posterior (AP) axis using both autonomous and non-autonomous mechanisms.  相似文献   

4.
5.
6.
7.
8.
Singh A  Chan J  Chern JJ  Choi KW 《Genetics》2005,171(1):169-183
Dorsoventral (DV) patterning is essential for growth of the Drosophila eye. Recent studies suggest that ventral is the default state of the early eye, which depends on Lobe (L) function, and that the dorsal fate is established later by the expression of the dorsal selector gene pannier (pnr). However, the mechanisms of regulatory interactions between L and dorsal genes are not well understood. For studying the mechanisms of DV patterning in the early eye disc, we performed a dominant modifier screen to identify additional genes that interact with L. The criterion of the dominant interaction was either enhancement or suppression of the L ventral eye loss phenotype. We identified 48 modifiers that correspond to 16 genes, which include fringe (fng), a gene involved in ventral eye patterning, and members of both Hedgehog (Hh) and Decapentaplegic (Dpp) signaling pathways, which promote L function in the ventral eye. Interestingly, 29% of the modifiers (6 enhancers and 9 suppressors) identified either are known to interact genetically with pnr or are members of the Wingless (Wg) pathway, which acts downstream from pnr. The detailed analysis of genetic interactions revealed that pnr and L mutually antagonize each other during second instar of larval development to restrict their functional domains in the eye. This time window coincides with the emergence of pnr expression in the eye. Our results suggest that L function is regulated by multiple signaling pathways and that the mutual antagonism between L and dorsal genes is crucial for balanced eye growth.  相似文献   

9.
10.
In Drosophila notum, the expression of achaete-scute proneural genes and bristle formation have been shown to be regulated by putative prepattern genes expressed longitudinally. Here, we show that two homeobox genes at the Bar locus (BarH1 and BarH2) may belong to a different class of prepattern genes expressed latitudinally, and suggest that the developing notum consists of checker-square-like subdomains, each governed by a different combination of prepattern genes. BarH1 and BarH2 are coexpressed in the anterior-most notal region and regulate the formation of microchaetae within the region of BarH1/BarH2 expression through activating achaete-scute. Presutural macrochaetae formation also requires Bar homeobox gene activity. Bar homeobox gene expression is restricted dorsally and posteriorly by Decapentaplegic signaling, while the ventral limit of the expression domain of Bar homeobox genes is determined by wingless whose expression is under the control of Decapentaplegic signaling.  相似文献   

11.
12.
13.
14.
The LIM-HD gene tailup (tup; also known as islet) has been categorised as a prepattern gene that antagonises the formation of sensory bristles on the notum of Drosophila by downregulating the expression of the proneural achaete-scute genes. Here we show that tup has an earlier function in the development of the imaginal wing disc; namely, the specification of the notum territory. Absence of tup function causes cells of this anlage to upregulate different wing-hinge genes and to lose expression of some notum genes. Consistently, these cells differentiate hinge structures or modified notum cuticle. The LIM-HD co-factors Chip and Ssdp are also necessary for notum specification. This suggests that Tup acts in this process in a complex with Chip and Ssdp. Overexpression of tup, together with araucan, a 'pronotum' gene of the iroquois complex (Iro-C), synergistically reinforces the weak capacity of either gene, when overexpressed singly, to induce ectopic notum-like development. Whereas the Iro-C genes are activated in the notum anlage by EGFR signalling, tup is positively regulated by Dpp signalling. Our data support a model in which the EGFR and Dpp signalling pathways, with their respective downstream Iro-C and tup genes, converge and cooperate to commit cells to the notum developmental fate.  相似文献   

15.
16.
17.
The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.  相似文献   

18.
19.
In Drosophila, muscles attach to epidermal tendon cells specified by the gene stripe (sr). Flight muscle attachment sites are prefigured on the wing imaginal disc by sr expression in discrete domains. We describe the mechanisms underlying the specification of these domains of sr expression. We show that the concerted activities of the wingless (wg), decapentaplegic (dpp) and Notch (N) signaling pathways, and the prepattern genes pannier (pnr) and u-shaped (ush) establish domains of sr expression. N is required for initiation of sr expression. pnr is a positive regulator of sr, and is inhibited by ush in this function. The Wg signal differentially influences the formation of different sr domains. These results identify the multiple regulatory elements involved in the positioning of Drosophila flight muscle attachment sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号