首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat used for predator escape may be a factor limiting restoration of desert bighorn sheep (Ovis canadensis mexicana) in small mountain ranges in New Mexico. Female bighorn sheep seek isolation in discrete areas for parturition. Although parturition sites are used only for <3 days they play an important role in neonate survival. We compared habitat characteristics at pre-parturition (n = 21), parturition (n = 38), random (n = 38), and post-parturition sites (n = 21). At each site we calculated distance to steep terrain, elevation, ruggedness, slope, and visibility. Parturition and post-parturition sites were higher in elevation and more rugged than sites used during pre-parturition. Post-parturition sites were closer to terrain with 100% slope than the pre-parturition or parturition sites. Post-parturition sites had higher visibility and steeper slopes than the pre-parturition sites. Parturition sites were steeper, higher in elevation, more rugged, and had lower visibility than the random sites. Fidelity to parturition sites was observed on 1 of 38 occasions. Because lambing sites are used for short periods they are poorly understood and often ignored by land managers. Additional research is recommended in other desert bighorn sheep populations to understand better and predict habitat use during the lambing period.  相似文献   

2.
Bighorn sheep (Ovis canadensis) evolved for thousands of years in the presence of numerous predators, including mountain lions (Puma concolor). Bighorn sheep have presumably developed predator avoidance strategies; however, the effectiveness of these strategies in reducing risk of mountain lion predation is not well understood. These strategies are of increasing interest because mountain lion predation on bighorn sheep has been identified as a leading cause of mortality in some sheep populations. Therefore, we investigated how mountain lions affect both bighorn sheep habitat selection and risk of mortality in Arizona, USA. We used 2 approaches to investigate the predator-prey relationship between mountain lions and bighorn sheep. We fit 103 bighorn sheep (81 females and 22 males) with global positioning system radio-collars in 2 Arizona populations from 2013 to 2017, and used a negative binomial resource selection probability function to evaluate whether bighorn sheep selected for habitat features in accordance with presumed predator avoidance strategies, including terrain ruggedness, slope, topographic position, and horizontal obstruction, in 2 seasons (winter and summer). We then estimated how habitat features such as terrain ruggedness, slope, horizontal obstruction, and group size, influence the risk of mortality due to mountain lion predation using an Andersen-Gill proportional hazards model. Generally, both sexes selected areas with lower horizontal obstruction and intermediate ruggedness and slope, but selection patterns differed between seasons and sexes. The use of more rugged areas and steeper slopes decreased the risk of mortality due to mountain lion predation, consistent with presumed predator avoidance strategies. Increased group size decreased risk of bighorn sheep mortality due to mountain lion predation but this effect became marginal at approximately 10 individuals/group. We did not identify a relationship between horizontal obstruction and bighorn sheep mortality risk. Our findings can be used in habitat and population management decisions such as the prioritization of habitat restoration sites or selection of translocation sites. In addition, we suggest that augmentation of low-density bighorn sheep populations may reduce mountain lion predation risk by increasing group size, and that releasing large groups of bighorn sheep in population augmentation and reintroduction efforts may help to reduce mountain lion predation.  相似文献   

3.
Abstract: Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.  相似文献   

4.
Efforts to recover Rocky Mountain bighorn sheep (Ovis canadensis canadensis) throughout western North America have had limited success with the majority of current populations remaining in small and isolated areas on a fraction of their historical range. Prairie environments with rugged topography throughout the Northern Great Plains ecoregion were historically occupied by relatively robust bighorn sheep populations. We predicted there is likely unrealized potential habitat for restoring bighorn sheep to these areas; however, relatively little attention has been devoted to identifying habitat in unoccupied prairie regions. We used global positioning system (GPS)-collar data collected from 43 female bighorn sheep in 2 populations located in the eastern Montana, USA, portion of the Northern Great Plains during 2014–2018 to estimate a population-level annual resource selection model and identify the important factors affecting bighorn sheep resource selection. We extrapolated model predictions across eastern Montana's prairie region and identified potential habitat to understand restoration potential and assist with future translocations of bighorn sheep. Resource selection of bighorn sheep was most strongly associated with terrain slope and ruggedness, tree canopy cover, and a normalized difference vegetation index metric. Within currently unoccupied areas of the historical range, the model extrapolation predicted 7,211 km2 of habitat, with most owned and managed by private landowners (44%), Bureau of Land Management (33%), and the United States Fish and Wildlife Service (15%). Our results provide an empirical evaluation of landscape covariates influencing resource selection of bighorn sheep occupying prairie environments and provide a habitat model that may be generalizable to other areas in the Northern Great Plains ecoregion. We demonstrate substantial potential for restoration opportunities of bighorn sheep in the Northern Great Plains ecoregion. Broad restoration of bighorn sheep across the ecoregion would likely require strong collaboration among and between public resource managers, private landowners, and livestock producers given the heterogeneous land ownership patterns, management strategies, and domestic sheep distributions. © 2020 The Wildlife Society.  相似文献   

5.
Aerial surveys for large ungulates produce count data that often underrepresent the number of animals. Errors in count data can lead to erroneous estimates of abundance if they are not addressed. Our objective was to address imperfect detection probability by developing a framework that produces realistic and defensible estimates of bighorn sheep (Ovis canadensis) abundance. We applied our framework to a population of desert bighorn sheep (O. c. nelsoni) in the Great Basin, Nevada, USA. We captured and marked 24 desert bighorn sheep with global positioning system (GPS)-collars and then conducted helicopter surveys naïve to the locations of collared animals. We developed a Bayesian integrated data model to leverage information from telemetry data, helicopter survey counts, and habitat characteristics to estimate abundance while accounting for availability and perception probability (i.e., detection given availability). Distance to ridgeline, terrain ruggedness, tree cover, and slope influenced perception probability of sheep given they were viewable from the helicopter. There was also annual variation in perception probability (2018: median = 0.64, credible interval [CrI] = 0.37–0.87; 2019: median = 0.81, CrI = 0.49–0.97). The abundance estimates from the integrated data model decreased from 2018 (594; 95% CrI = 537–656) to 2019 (487; 95% CrI = 436–551). In addition, accounting for availability and imperfect perception resulted in greater estimates of abundance compared to traditional directed search methods, which were 340 for 2018 and 320 for 2019. Our modeling framework can be used to generate more defensible population estimates of bighorn sheep and other large mammals that have been surveyed in a similar manner.  相似文献   

6.
Rocky Mountain bighorn sheep (Ovis canadensis) restoration continues to be a challenge throughout western North America despite nearly a century of efforts dedicated to the species' recovery. Though bighorn sheep restoration may be constrained by several environmental factors and behavioral tendencies, areas with unrealized restoration potential may exist if novel restoration strategies are considered. We used global positioning system (GPS) location data from 27 female bighorn sheep within the southern portion of the Madison Range in southwest Montana, USA, 2015–2017, to develop and validate winter and summer habitat models, which we extrapolated throughout the entire Madison Range to identify potential seasonal habitat. We estimated potential bighorn sheep minimum population estimates within the extrapolation area by linking our top-ranked winter habitat model to population count data. During summer, female bighorn sheep selected areas characterized by rugged and steep terrain, reduced canopy cover, southwestern aspects, and ridgelines. During winter, female bighorn sheep selected areas characterized by low elevations, southwestern aspects, steep slopes, reduced canopy cover, ridgelines, high normalized difference vegetation index amplitude, and areas close to steep terrain. Predicted summer habitat was concentrated along the high-elevation ridgelines associated with steep slopes and reduced canopy cover. Predicted winter habitat occurred in a non-contiguous distribution primarily along the low-elevation, southwest-facing aspects along the western slopes of the Madison Range. Our results suggest that the Madison Range may be capable of supporting 780–1,730 animals, which is 2–4 times the number of bighorn sheep currently observed within the range. Further, our findings provide managers with a quantification of female bighorn sheep habitat and suggests that a strategy focused on establishing a metapopulation through a series of within-range translocations may enhance bighorn sheep restoration. We suggest that similar restoration opportunities may be common in other unoccupied areas of bighorn sheep historical range. © 2020 The Wildlife Society.  相似文献   

7.
Bighorn sheep populations experienced a drastic reduction in both distribution and abundance until the advent of modern wildlife management, where improving viability of extant populations and translocating animals into historical habitat range have been the most important management policies. The fact that subspecies relationships among bighorn are ambiguous,together with the importance of selecting appropriate source stock and the expense of translocation projects, makes an understanding of subspecies relationships and genetic variation, within and between populations, important for the management and conservation of this species. In this study, genetic variation in 279 bighorn sheep from 13 study sites in Arizona, California, New Mexico and Alberta, Canada were examined by analyzing ten microsatellite loci to determine interpopulation differentiation and relationships between closely related taxa. All populations contained a substantial amount of genetic variation. Genetic differences between populations were large and roughly proportional to geographic distance. The significance of this to desert subspecies relationships and management is discussed.  相似文献   

8.
Between 1978 and 1997, a combination of psoroptic scabies (Psoroptes spp.), mountain lion (Puma concolor) predation, and periodic drought reduced a population of native desert bighorn sheep (Ovis canadensis) in the San Andres Mountains (SAM), New Mexico, from >200 individuals to a single ewe. In 1999, this ewe was captured, ensured to be Psoroptes-free, and released back into the SAM. Eleven radio-collared rams were translocated from the Red Rock Wildlife Area (RRWA) in New Mexico into the SAM range and monitored through 2002 to determine whether Psoroptes spp. mites were still in the environment. None of these sentinel rams acquired scabies during this period, and no additional native sheep were found to be present in the range. In 2002, 51 desert bighorn sheep were translocated into the SAM from the Kofa National Wildlife Refuge in Arizona (n = 20) and the RRWA in New Mexico (n = 31). Twenty-one bighorn sheep have died in the SAM since that time, but Psoroptes spp. mites have not been detected on any of these animals, nor have they been found on mule deer (Odocoileus hemionus) sampled since 2000. We conclude that psoroptic scabies is no longer present in the San Andres bighorn sheep population and that psoroptic scabies poses a minimal to nonexistent threat to the persistence of this population at this time.  相似文献   

9.
Isolated, nonmigratory populations of bighorn sheep (Ovis canadensis) may experience high exposure to lungworms (Protostrongylus spp.) through a build-up of fecal material. However, semiarid climates may hinder lungworm transmission by limiting terrestrial gastropods, the intermediate hosts. We assessed potential for lungworm transmission, documented occurrence of transmission, and identified habitat types where transmission was likely to occur on ranges of two recently introduced populations of bighorn sheep in northern Utah. Gastropods were collected weekly on Antelope Island and the Newfoundland Mountains, May-August 2001-02, from each of the four major habitat types (riparian, rock, desert shrub, and grass). Distribution of 113 bighorn sheep groups was observed, and 421 fecal pellet groups were collected to estimate lungworm levels. A total of 1,595 gastropods representing five genera were collected from both ranges. Vallonia made up 85% of all gastropods collected. Of 980 gastropods collected on Antelope Island in 2002, only Vallonia were found infected with protostrongylid-type larvae (10 of 980=1%). Lungworm prevalence in bighorn fecal samples was 97% on Antelope Island and 90% on the Newfoundland Mountains. Lungworm prevalence in lambs indicated lungworm transmission was occurring on Antelope Island. Lungworm transmission was likely occurring in riparian habitat due to abundant gastropods, presence of infected gastropods, and reliance by bighorn sheep on few water sources. Differences in spatial distribution between ram and nursery groups may partly explain higher fecal larvae counts in nursery than in ram groups. We suggest lungworm levels in bighorn sheep on semiarid ranges may increase in dry years as bighorn sheep concentrate use on fewer perennial water sources.  相似文献   

10.
地形是动物栖息地中非常稳定的环境因素。了解有蹄类特殊时期对地形的偏好,既有助于揭示动物行为策略形成的机制,又有助于我们实施保护和管理。本文对羚牛(Budorcas taxicolor tibetana)春季地形选择特征进行了初步探讨,数据来自于4只佩戴GPS无线电颈圈的羚牛3月中旬至4月中旬的定位数据。通过对羚牛活动位点与可选择地形的7个地形因素(坡度、坡向、坡位、海拔、地形起伏度、距峭壁距离、距山脊距离)的比较分析,发现羚牛在春季对地形存在选择。通过因子分析发现,影响羚牛春季地形选择的因素可以分为地形复杂度因子(坡度、地形起伏度),反捕食因子(海拔、距峭壁距离)和坡位因子(坡位)三类因素。与可供选择地形相比,羚牛利用的地形更偏离峭壁或陡坡、坡度更缓、海拔更低、明显偏离山脊、地形起伏程度较低。羚牛显著倾向于选择平坡和中位坡,且主要选择阴坡和阳坡。雌雄个体在7个地形因素的偏好上存在显著的差异,但雌性在距离峭壁和距离山脊的距离以及坡位的选择上与可供选择地形均无显著的差异。  相似文献   

11.
We studied mountain sheep in the vicinity of three high-wall limestone mines in San Bernardino County, CA, USA to evaluate factors that influenced habitat use and, specifically, to investigate the influence of mining activity on distribution of those specialized ungulates. We used aerial telemetry data to estimate a resource selection function by fitting a logistic regression model and then comparing environmental characteristics at observed sheep locations to those at random locations. Distribution of mountain sheep was most influenced by a fire in 1999 that resulted in an area they avoided. Mountain sheep used steeper slopes, areas of lower terrain roughness, higher elevations, and areas closer to escape terrain than were random points. In contrast, sheep avoided areas near roads (federal and state highways, local roads, and off-road vehicle trails) but used areas near hiking trails and a railway. Water sources had the smallest effect of the factors considered, with sheep being associated with areas further from water points than were random locations. The disturbed area associated with the mines had a moderate influence on distribution, with sheep being associated with areas closer to the mine than were random points. Mining activities can alter terrain features and vegetation structure or composition in a way that promotes occupancy by sheep if they create steep slopes and rugged terrain (escape terrain) or reduce vegetation density or height (i.e., improve visibility). Whether increased occupancy reflects a benefit depends on the demographic responses of those sheep to the resources and conditions available on mine sites; information about those responses remains lacking.  相似文献   

12.
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.  相似文献   

13.
Field data on weaning behavior in bighorn sheep (Ovis canadensis) were collected from populations in British Columbia, southern California, and one transplanted from the original B.C. study site to eastern Oregon. These areas were designated mountain, desert, and transplant, respectively. Seasons that were energetically stressful to lactating ewes were predicted. Summers were implicated for desert ewes; winters for ewes in colder and more seasonal northern environments. Although the temporal distribution of milk available to lambs varied between the three study populations, ewes generally weaned their lambs prior to the onset of the predicted stressful periods. In the desert, weaning occurred more abruptly than it did in the two more northern populations. The evolution of weaning strategies is discussed in subspecies of bighorn sheep based on proximate and ultimate factors.  相似文献   

14.
An infectious keratoconjunctivitis (IKC) epizootic in bighorn sheep (Ovis canadensis) occurred in the Silver Bell Mountains, Arizona, USA, from 1 December 2003 to 31 March 2004. We used standard culture methods and polymerase chain reaction (PCR) amplification of the 16S rRNA gene to test for the causative agents of IKC and other diseases reported to be associated with bighorn sheep populations. All bighorn sheep and domestic goat test results were negative except for Mycoplasma spp. and Branhamella spp. The culture and PCR results differed. Conjunctival swabs from four of 19 IKC-affected bighorn sheep tested by culture were positive for Mycoplasma spp., whereas 22 of 22 bighorn sheep samples tested by PCR were positive for Mycoplasma spp. None of 13 domestic goats tested positive by culture for Mycoplasma spp., whereas five of 16 tested positive by PCR. Three of 16 domestic goats and seven of 24 IKC-affected bighorn sheep tested positive for Branhamella spp. by culture. Bighorn sheep began showing clinical signs of IKC between 21 and 28 days following initial detection of domestic goats in bighorn sheep habitat. The IKC epizootic lasted 122 days, and individual bighorn sheep were blind for an average of 38.4 days. Given the clear potential for disease transmission to bighorn sheep, we recommend that land managers not allow the pasturing of domestic goats near occupied bighorn sheep habitat.  相似文献   

15.
Understanding the spatial ecology of small populations at the periphery of their range is important for identifying factors limiting population growth and developing sound management strategies. Bighorn sheep were reintroduced to Nebraska in 1981 and persist in a small population at the easternmost extent of the distribution of the species, where 1 of the 2 subpopulations is declining. Bighorn sheep space use and movement has been studied extensively in mountain and desert populations, but information is sparse from prairie populations in the Northern Great Plains. We investigated the spatial ecology of female bighorn sheep in Nebraska, USA, with global positioning system (GPS) telemetry. We tested the hypothesis that space use and movements would vary across seasons, years, and individuals but predicted that migration would involve relatively short distances in this translocated population (relative to native populations) occupying a fragmented landscape. Overall, females used smaller seasonal home ranges (3.3–7.8 km2) than most of those reported previously for the species and exhibited a high degree of variability in space use and movements across seasons, subpopulations, and individuals. Most females (92–100%) exhibited fidelity to their home ranges across seasons and years. Six females migrated between spatially distinct core lambing and winter ranges, although the distances (range = 7.9–8.7 km) and mean elevations (range = 31–41 m) between these core seasonal ranges were less than those reported for most native, migratory bighorn sheep populations. After accounting for variation in season, subpopulation, and years, home range size was positively associated with road density in both subpopulations (P < 0.001), suggesting that females incur greater energetic costs associated with greater space use in areas of higher fragmentation. Our results establish the basic spatial ecology of female bighorn sheep in Nebraska where their behavior appears to reflect the isolated nature of suitable habitat in this fragmented prairie landscape.  相似文献   

16.
Predation can disproportionately affect endangered prey populations when generalist predators are numerically linked to more abundant primary prey. Apparent competition, the term for this phenomenon, has been increasingly implicated in the declines of endangered prey populations. We examined the potential for apparent competition to limit the recovery of Sierra Nevada bighorn sheep (Ovis canadensis sierrae), an endangered subspecies under the US Endangered Species Act. Using a combination of location, demographic, and habitat data, we assessed whether cougar (Puma concolor) predation on endangered bighorn sheep was a consequence of their winter range overlap with abundant mule deer (Odocoileus hemionus). Consistent with the apparent competition hypothesis, bighorn sheep populations with higher spatial overlap with deer exhibited higher rates of cougar predation which had additive effects on adult survival. Bighorn sheep killed by cougars were primarily located within deer winter ranges, even though those areas constituted only a portion of the bighorn sheep winter ranges. We suspect that variation in sympatry between bighorn sheep and deer populations was largely driven by differences in habitat selection among bighorn sheep herds. Indeed, bighorn sheep herds that experienced the highest rates of predation and the greatest spatial overlap with deer also exhibited the strongest selection for low elevation habitat. Although predator-mediated apparent competition may limit some populations of bighorn sheep, it is not the primary factor limiting all populations, suggesting that the dynamics of different herds are highly idiosyncratic. Management plans for endangered species should consider the spatial distributions of key competitors and predators to reduce the potential for apparent competition to hijack conservation success.  相似文献   

17.
ABSTRACT We developed predictive habitat models for a bighorn sheep (Ovis Canadensis) population in the Peninsular Ranges of southern California, USA, using 2 Geographic Information System modeling techniques, Ecological Niche Factor Analysis (ENFA) and Genetic Algorithm for Rule-set Production (GARP). We used >16,000 Global Positioning System locations from 34 animals in 5 subpopulations to develop and test ENFA and GARP models, and we then compared these models to each other and to the expert-based model presented in the United States Fish and Wildlife Service's Recovery Plan for this population. Based on a suite of evaluation methods, we found both ENFA and GARP to provide useful predictions of habitat; however, models developed with GARP appeared to have higher predictive power. Habitat delineations resulting from GARP models were similar to the expert-based model, affirming that the expert-based model provided a useful delineation of bighorn sheep habitat in the Peninsular Ranges. In addition, all 3 models identified continuous bighorn sheep habitat from the northern to southern extent of our study area, indicating that the Recovery Plan's recommendation of maintaining habitat connectivity throughout the range is an appropriate goal.  相似文献   

18.
We sequenced 556 bp of the mitochondrial ND5 gene to infer aspects of population structure and to test subspecific designations of argali sheep (Ovis ammon) in Mongolia. Analysis of molecular variance (AMOVA) revealed greater variation within than among putative subspecies and populations, suggesting high levels female-mediated gene flow. Compared with bighorn sheep (O. canadensis) in North America, substantially less differentiation in mitochondrial DNA was found among argali populations over 1200 km than was found among bighorn populations over 250 km. This result is consistent with differences in argali and bighorn life history traits. Argali run for long distances across open terrain in the presence of a threat rather than running up into steep escape terrain like bighorn sheep do. Our results suggest recognizing only one Evolutionary Significant Unit (subspecies) of argali in Mongolia, but they may support recognizing two Management Units, because two regions do exhibit slightly different haplotype frequencies at the ND5 gene of mtDNA.  相似文献   

19.
ABSTRACT Understanding colonization is vital for managing fragmented populations. We employed mitochondrial DNA haplotypes and 14 microsatellite (nuclear DNA) markers to infer the origins of newly established populations of desert bighorn sheep (Ovis canadensis nelsoni) and to assess loss of genetic diversity during natural colonizations. We used haplotype distribution, F-statistics, Bayesian population clustering, and assignment tests to infer source populations for 3 recent colonies and identified a previously undetected colonization from multiple source populations. Allelic richness declined in 3 of 4 colonies in comparison to the primary source populations, but not as much as has been reported for translocated populations. Heterozygosity declined in only one colony. We also demonstrated that both native and translocated desert bighorn sheep have naturally recolonized empty habitats and suggest that colonization may partially offset population extinction in the region as long as connectivity is maintained. Genetic techniques and mitochondrial DNA haplotypes we described will allow managers to determine the origins of future colonizations by bighorn sheep in California, USA, and prioritize protection of linkages between known sources and colonies.  相似文献   

20.
Founder effect in an island population of bighorn sheep   总被引:1,自引:0,他引:1  
The Tiburon Island population of desert bighorn sheep has increased in size from 20 founders in 1975 to approximately 650 in 1999. This population is now the only population being used as the source stock for transplantations throughout northern Mexico. To evaluate the genetic variation in this population, we examined 10 microsatellite loci and a major histocompatibility complex (MHC) locus. The genetic variation was significantly less than found in other populations of the same subspecies in Arizona. Using a model that takes into account the effects of genetic drift on genetic distance, most of the genetic distance observed between the Tiburon population and Arizona samples could be explained. Because of the low genetic variation found in the Tiburon population, it is suggested that the Tiburon population should be supplemented with additional unrelated animals or that the transplant populations should be supplemented with unrelated animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号