首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In situ photoaffinity labelling of the human androgen receptor has been performed in the LNCaP (Lymph Node Carcinoma of the Prostate) cell line. The covalently labelled receptors were identified by SDS-PAGE. Intact LNCaP cells, incubated with [3H]-R1881 and subsequently irradiated with u.v. light and directly solubilized in SDS-buffer, revealed two photolabelled protein bands at 110 and 50 kDa. Irradiation of intact cells and subsequent isolation of nuclei followed by extraction with 0.5 M NaCl resulted in one major photolabelled protein band at 110 kDa. The labelling of this band could be completely suppressed by a 100-fold molar excess of non-radioactive R1881. Photolabelling of androgen receptors in a cytosolic preparation of LNCaP cells after anion exchange chromatography resulted in a much lower labelling efficiency compared with the in situ labelling procedure, although the androgen receptor was purified 100-fold. The steroid binding domain of the human androgen receptor has been partially mapped with chymotrypsin and S. aureus V8 protease digestion. Proteolytic digestion with chymotrypsin of purified photoaffinity-labelled 110 kDa human androgen receptor resulted in the generation of a 15 kDa peptide which still contains the covalently linked hormone. It is concluded that the in situ photoaffinity labelling technique can be applied successfully for characterization of the steroid binding domain of androgen receptors in prostate cancer cells and in other androgen target cells. Furthermore, it was demonstrated that the human androgen receptor is a monomer with a molecular mass of 110 kDa, of which the steroid binding site is confined to a 15 kDa domain.  相似文献   

2.
The highest molecular weight form of the calf uterine androgen receptor separates as an 11S form in glycerol gradients. This "cytosolic" receptor, prepared in the presence of molybdate, polyethyleneimide and low ionic strength, dissociates into 9S and 7.2S forms with increasing KCl concentration. A 4.5S androgen binding component appears as the predominant form of the receptor in the absence of polyethyleneimide and this unit quantitatively converts to a stable 3.5S form in the absence of molybdate. Renaturation of partially purified protein, separated by SDS-PAGE electrophoresis, demonstrates the presence of an androgen binding component in the 110 kDa region of the gel. This renatured protein separates as a 4.5S component in glycerol gradients and has a Stokes radius of 6 nm. Photoaffinity labelling of partially purified receptor preparations, followed by SDS-PAGE electrophoresis, reveals the presence of an androgen binding component having a molecular weight of 115 kDa. The binding characteristics and specificity of the receptor binding to R1881 have been studied and a DHT-affinity chromatography resin used to purify the receptor.  相似文献   

3.
4.
5.
The synthetic androgen 17 beta-hydroxy-17 alpha-[3H]methyl-4,9,11-estratrien-3-one (R1881) has been used as photoaffinity label to characterize androgen receptors in calf uterus and rat prostate. Polyacrylamide gel electrophoresis under denaturing conditions showed that the DNA-binding form of the androgen receptor in calf uterus cytosol is a protein with a molecular mass of 98 kD. In rat prostate cytosol an androgen receptor with a molecular mass of 46 kD could be photoaffinity labelled with R1881. The photoaffinity labelling procedure described here provides a method for studying the hormone binding domain of androgen receptors in partial purified preparations.  相似文献   

6.
Phosphorylation of the androgen receptor was investigated in the absence of hormone as well as during and after transformation of the receptor to the tight nuclear binding form. Human prostate tumor cells (LNCaP) were labeled for 4 h with [32P]orthophosphate in the presence or absence of steroid. Subsequently, androgen receptors were immunoprecipitated either from total cell lysates or from nuclear extracts using a specific monoclonal antibody. The immunoprecipitated receptor preparations were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, using a polyclonal antiserum, and autoradiography. It was observed that the androgen receptor is already phosphorylated in the absence of hormone, but undergoes a hormone-induced additional phosphorylation. After administration of 10 nM R1881, a 1.8-fold increase in phosphorylation over nonstimulated control cells was reached. Moreover, the amount of nuclear extractable androgen receptor was increased; the acquisition of tight nuclear binding capacity was accompanied by hormone-induced receptor phosphorylation.  相似文献   

7.
Discrete functions have been attributed to precise regions of the human androgen receptor (hAR) by expression of deletion mutants in COS and HeLa cells. A large C-terminal domain constitutes the hormone-binding region and a central basis, cysteine-rich domain is responsible for DNA binding. In addition, separate domains responsible for transactivation and nuclear translocation have been identified. In LNCaP cells (a prostate tumor cell line) the hAR is a heterogeneous protein which is synthesized as a single 110 kDa protein, but becomes rapidly phosphorylated to a 112 kDa protein. Metabolic labeling experiments using radioactive orthophosphate also indicated that the hAR is a phosphoprotein. Structural analysis of the AR gene in LNCaP cells and in 46, XY-individuals displaying androgen insensitivity (AIS) has revealed several different point mutations. In LNCaP cells the mutation affects both binding specificity and transactivation by different steroids. In a person with complete AIS a point mutation was identified in the splice donor site of intron 4, which prevents normal splicing and activates a cryptic splice donor site in exon 4. The consequence is a functionally inactive AR protein due to an in-frame deletion in the steroid-binding domain. In two unrelated individuals with complete AIS, two different single nucleotide alterations in codon 686 (Asp) were found. Both mutations resulted in functionally inactive ARs due to rapidly dissociating hormone-AR complexes. It is concluded that the hAR is a heterogeneous phosphoprotein in which functional errors have a dramatic impact on phenotype and fertility of 46, XY-individuals.  相似文献   

8.
9.
The chicken oviduct contains two different hormone binding forms of the progesterone receptor, A and B. We have prepared rat antisera against both forms of the receptor partially purified from laying hen oviduct. The anti-progesterone receptor A antiserum reacts with both receptor forms on Western blots, while the anti-progesterone receptor B antiserum reacts mainly with the B form. Both antisera also react with the native progesterone receptor proteins as shown by sedimentation analysis of the antibody-receptor complexes. Receptors A and B are recognized on Western blots of total protein from dissolved tissue, indicating that both forms are likely to be physiological components. Epitope mapping experiments show that immunogenicity of both receptor molecules is restricted to structurally related protein domains of 28 kDa in receptor A and of 52 kDa in receptor B.  相似文献   

10.
Purified "B" protein (MW approximately 110 kDa) that binds progesterone, and more than 90% of the activated receptor labelled with tritiated hormone in the oviduct cytosol of chicks pretreated with estrogen have the same chromatography behavior on DNA-cellulose. Conversely, neither the nonactivated "8S" receptor, that includes the heat-shock protein hsp90, nor the later bind to DNA. With other biochemical and immunological arguments, these results indicate that the hormone binding B unit of the progesterone receptor binds DNA as do all steroid hormone receptors.  相似文献   

11.
12.
13.
A novel murine membrane-associated protein kinase, PKK (protein kinase C-associated kinase), was cloned on the basis of its physical association with protein kinase Cbeta (PKCbeta). The regulated expression of PKK in mouse embryos is consistent with a role for this kinase in early embryogenesis. The human homolog of PKK has over 90% identity to its murine counterpart, has been localized to chromosome 21q22.3, and is identical to the PKCdelta-interacting kinase, DIK (Bahr, C., Rohwer, A., Stempka, L., Rincke, G., Marks, F., and Gschwendt, M. (2000) J. Biol. Chem. 275, 36350-36357). PKK comprises an N-terminal kinase domain and a C-terminal region containing 11 ankyrin repeats. PKK exhibits protein kinase activity in vitro and associates with cellular membranes. PKK exists in three discernible forms at steady state: an underphosphorylated form of 100 kDa; a soluble, cytosolic, phosphorylated form of 110 kDa; and a phosphorylated, detergent-insoluble form of 112 kDa. PKK is initially synthesized as an underphosphorylated soluble 100-kDa protein that is quantitatively converted to a detergent-soluble 110-kDa form. This conversion requires an active catalytic domain. Although PKK physically associates with PKCbeta, it does not phosphorylate this PKC isoform. However, PKK itself may be phosphorylated by PKCbeta. PKK represents a developmentally regulated protein kinase that can associate with membranes. The functional significance of its association with PKCbeta remains to be ascertained.  相似文献   

14.
15.
Human beta thyroid hormone receptor (c-erb A beta protein) produced by an Escherichia coli expression system was purified by sequential column chromatography followed by electroelution from an electrophoresis gel and an antibody was prepared. The antibody recognized a 56 kDa protein band in a partially purified rat hepatic nuclear thyroid hormone receptor fraction on Western blotting. Although multiple bands appeared on Western blotting of crude rat hepatic receptor preparations, a 56 kDa band was the most prominent and preadsorption of the antibody by purified c-erb A protein resulted in almost complete disappearance of the 56 kDa band, indicating that the 56 kDa band was formed by a specific antigen-antibody interaction. Furthermore, the 56 kDa protein appeared to co-elute with 3, 5, 3'-triiodo-L-thyronine binding activity in hydroxylapatite, Sephacryl S-200, and DNA-cellulose column chromatography of rat hepatic nuclear receptor, and sequential column purification resulted in selective enrichment of the 56 kDa band. These results suggest that the 56 kDa protein may be the major component of the rat hepatic thyroid hormone receptor.  相似文献   

16.
17.
采用pull down技术研究preS1在HepG2细胞膜上的结合蛋白。以原核表达的GST-preS1融合蛋白为探针蛋白,与生物素标记的HepG2细胞裂解液进行pull down试验分离与preS1结合的膜蛋白。Western blot结果显示HepG2细胞膜上有一大小约110kDa蛋白(p110)与preS1结合。通过对比实验证明该蛋白具有较好的组织特异性和种属特异性。研究结果显示该蛋白是HepG2细胞膜上与preS1结合的蛋白,可能与HBV的早期感染过程有关。  相似文献   

18.
The structure of Sarcophaga lectin receptor on the surface of murine macrophages was analyzed using monoclonal antibodies. This receptor was found by gel filtration to have a molecular weight of 460 kDa. SDS-polyacrylamide gel electrophoresis showed that this receptor consists of two subunits of 170 kDa and 110 kDa. The results indicated that it is probably a heterotetramer of two molecules of each subunit. Two monoclonal antibodies recognized epitopes in the 110 kDa subunit, and one of them specifically inhibited the binding of Sarcophaga lectin to macrophages and the cytotoxic reaction mediated by this lectin in the presence of macrophages. Therefore, it is likely that the 110 kDa protein in the receptor plays a role in activation of macrophages by this lectin.  相似文献   

19.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

20.
In the present study, calf uterine tissue has been used for isolation of androgen receptors. This tissue appeared to be a favourable source for large-scale purification of androgen receptors, because of the relatively high level of androgen receptors and the low concentration of proteolytic enzymes. The purification involved differential phosphocellulose and DNA affinity chromatography as first steps. The non-transformed receptor was passed through these matrices in order to remove contaminating DNA-binding proteins. After a transformation step to the DNA-binding state, the receptor was bound to DNA cellulose and subsequently eluted with MgCl2. A 0.5% pure androgen receptor preparation was obtained. Photoaffinity labelling with [3H]R1881 (methyltrienolone) was used to determine the size of the receptor at this stage of purification and during the following steps. Subsequently, isoelectric focussing of the partially purified androgen receptor preparation in an aqueous glycerol gradient was performed. In this step, the progesterone receptor, which is copurified with the androgen receptor protein during the first part of the purification procedure, focussed at pH 5.5 while the androgen receptor could be isolated at pH 5.8. The isoelectric focussing procedure could be applied in a preparative way for further purification of androgen receptors. After this step an approx. 8% pure preparation was obtained. Polyacrylamide gel electrophoresis of S-carboxymethylated androgen receptor was used as the final purification step. The [3H]methyltrienolone labelled androgen receptor from calf uterus was purified to homogeneity and consisted of one polypeptide with a molecular mass of 110 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号