首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dioxins cause various adverse effects through transformation of aryl hydrocarbon receptor (AhR). In this study, we investigated whether black tea extract and its components, theaflavins, suppress AhR transformation in vitro. First, we confirmed that black tea extract strongly suppressed AhR transformation compared to green and oolong tea, although the catechin contents did not change significantly among the extracts. Then we isolated four theaflavins as active compounds from black tea leaves. They suppressed 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AhR transformation in a dose-dependent manner. The IC(50) values of theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, and theaflavin-3,3'-digallate (Tfdg) were 4.5, 2.3, 2.2, and 0.7 muM, respectively. The suppressive effect of Tfdg was observed not only by pre-treatment but also by post-treatment. This suggests that theaflavins inhibit the binding of TCDD to the AhR and also the binding of the transformed AhR to the specific DNA-binding site as putative mechanisms.  相似文献   

2.
In order to separate the main individual theaflavin monomers from black tea, high-speed countercurrent chromatography (HSCCC) and Sephadex LH-20 column chromatography were applied. The results showed that theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) can be obtained by HSCCC using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:3:1:6, v/v/v/v), but the TF1 was containing epicatechin-3-gallate (ECG). Similarly, Sephadex LH-20 can also effectively separate TF2A(B) and TF3, but epigallocatechin-3-gallate (EGCG) contaminated TF1, too. Combination of HSCCC and Sephadex LH-20, the preferably purified TF1, TF2A(B) and TF3 were obtained than single separation technique. In addition, ECG and EGCG were also suggested to be able to be comprehensively separated by combination of the two techniques.  相似文献   

3.
4.
5.
6.
Four dietary polyphenols, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate and theaflavin-3,3'-digallate (TF3), have been isolated from black tea, and their effects on oxidative phosphorylation and superoxide production in a model system (Escherichia coli) have been examined. The esterified theaflavins were all potent inhibitors of the membrane-bound adenosine triphosphate (ATP) synthase, inhibiting at least 90% of the activity, with IC(50) values in the range of 10-20 μM. ATP-driven proton translocation was inhibited in a similar fashion, as was the purified F(1)-ATPase, indicating that the primary site of inhibition was in the F(1) sector. Computer modeling studies supported this interpretation. All four theaflavins were also inhibitory towards the electron transport chain, whether through complex I (NDH-1) or the alternative NADH dehydrogenase (NDH-2). Inhibition of NDH-1 by TF3 appeared to be competitive with respect to NADH, and this was supported by computer modeling studies. Rates of superoxide production during NADH oxidation by each dehydrogenase were measured. Superoxide production was completely eliminated in the presence of about 15 μM TF3, suggesting that inhibition of the respiratory chain by theaflavins does not contribute to superoxide production.  相似文献   

7.
8.
In this study, the effects of tea catechins and tea theaflavins on myocardial contraction were examined in isolated rat hearts using a Langendorff-perfusion system. We found that both tea catechins and theaflavins had positive inotropic effects on the myocardium. Of the tested chemicals, epicatechin-3-gallate (ECG) and theaflavin-3,3'-digallate (TF(4)) appear to be the most effective tea catechin and theaflavin, respectively. Further studies of ECG-induced positive inotropy revealed the following insights. First, unlike digitalis drugs, ECG had no effect on intracellular Ca(2+) level in cultured adult cardiac myocytes. Second, it activated PKCepsilon, but not PKCalpha, in the isolated hearts as well as in cultured cells. Neither a phospholipase C (PLC) inhibitor (U73122) nor the antioxidant N-acetyl cysteine (NAC) affected the ECG-induced activation of PKCepsilon. Third, inhibition of PKCepsilon by either chelerythrine chloride (CHE) or PKCepsilon translocation inhibitor peptide (TIP) caused a partial reduction of ECG-induced increases in myocardial contraction. Moreover, NAC was also effective in reducing the effects of ECG on myocardial contraction. Finally, pretreatment of the heart with both CHE and NAC completely abolished ECG-induced inotropic effects on the heart. Together, these findings indicate that ECG can regulate myocardial contractility via a novel PKCepsilon-dependent signaling pathway.  相似文献   

9.
10.
11.
The gastrokinetic effects of hot water extract of black tea [Camellia sinensis, (L) O. Kuntze (Theaceae)] on gastrointestinal motility were studied both in vivo and in vitro. The extract significantly accelerated the gastrointestinal transit (GIT) in vivo in mice. These facilitatory effect was reduced after pretreatment with atropine, hemicholinium-3, morphine, indomethacin, McN-A-343 and L-arginine. In guinea pig ileum, the extract facilitated the peristaltic reflex in response to pressures in normal preparation. The black tea extract and L-NMMA (nitric oxide synthase inhibitor) significantly reduced the electrical field stimulated nonadrenergic, noncholinergic (NANC) relaxation of isolated rat fundal strips. The extract markedly enhanced the tonic ('hump') responses to transmural stimulation in longitudinal muscle of guinea pig ileum which was unaltered in the presence of atropine. These findings suggest a cholinergic involvement and a partial role of prostaglandin and nitric oxide in the mechanism of action of black tea extract on gastrointestinal motility. To determine the effective constituents in black tea responsible for this activity, the effect of black tea polyphenols on GIT were also studied. Thearubigin fraction (but not theaflavin) accelerated GIT significantly which suggests its involvement in the prokinetic effect of black tea.  相似文献   

12.
Theaflavin derivatives and catechin derivatives are the major polyphenols in black tea and green tea, respectively. Several tea polyphenols, especially those with galloyl moiety, can inhibit HIV-1 replication with multiple mechanisms of action. Here we showed that the theaflavin derivatives had more potent anti-HIV-1 activity than catechin derivatives. These tea polyphenols could inhibit HIV-1 entry into target cells by blocking HIV-1 envelope glycoprotein-mediated membrane fusion. The fusion inhibitory activity of the tea polyphenols was correlated with their ability to block the formation of the gp41 six-helix bundle, a fusion-active core conformation. Computer-aided molecular docking analyses indicate that these tea polyphenols, theaflavin-3,3'-digallate (TF3) as an example, may bind to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled coil formed by the N-terminal heptad repeats of gp41. These results indicate that tea, especially black tea, may be used as a source of anti-HIV agents and theaflavin derivatives may be applied as lead compounds for developing HIV-1 entry inhibitors targeting gp41.  相似文献   

13.
Production of black tea [BT] results in biotransformation of catechins of green tea [GT] to theaflavins and thearubigins. BT was found to be more efficient than GT and its individual catechin constituents in proportionate amounts in abrogating production of NO and O2(-) in activated murine peritoneal macrophages. In a reconstitution system of BT that is free of all catechins, stepwise addition of catechins showed that though all the constituents contributed to the overall effect of BT, theaflavin was the most powerful in abrogating NO production. RT-PCR analysis also showed theaflavin to be the most important constituent in down-regulating synthesis of iNOS. Clearly, BT containing theaflavin is an excellent chemopreventor against reactive oxygen and nitrogen species.  相似文献   

14.
Several reports have attributed to green tea chemopreventive and therapeutic properties. Epidemiological studies have linked the regular use of green tea to a reduced incidence of breast and colon carcinomas. Tea contains several antioxidants, including polyphenols of the catechin (green tea) and theaflavin (black tea) groups. Green tea derivatives have been shown to act in vitro and in vivo as anti-inflammatory, anti-viral and anti-tumor drugs. Despite the extensive body of data only few studies have investigated the molecular mechanisms underlying these effects. In this brief review we focus on the inhibitory activity of catechins derived from green tea toward proteases involved in tumor invasion.  相似文献   

15.
16.
Over the years, several studies have brought evidence suggesting that tea polyphenols, mostly from green tea, may have oral health benefits. Since few data are available concerning the beneficial properties of black tea and its theaflavin derivatives against periodontal disease, the objective of this study was to investigate their antibacterial activity as well as their ability to modulate interleukin-8 and human β-defensin (hBD) secretion in oral epithelial cells. Among the periodontopathogenic bacteria tested, Porphyromonas gingivalis was found to be highly susceptible to the black tea extract and theaflavins. Moreover, our data indicated that the black tea extract, theaflavin and theaflavin-3,3’-digallate can potentiate the antibacterial effect of metronidazole and tetracycline against P. gingivalis. Using lipopolysaccharide-stimulated oral epithelial cells, the black tea extract (100 μg/ml), as well as theaflavin and theaflavin-3,3’-digallate (50 μg/ml) reduced interleukin-8 (IL-8) secretion by 85%, 79%, and 86%, respectively, thus suggesting an anti-inflammatory property. The ability of the black tea extract and its theaflavin derivatives to induce the secretion of the antimicrobial peptides hBD-1, hBD-2 and hBD-4 by oral epithelial cells was then evaluated. Our results showed that the black tea extract as well as theaflavin-3,3’-digallate were able to increase the secretion of the three hBDs. In conclusion, the ability of a black tea extract and theaflavins to exert antibacterial activity against major periodontopathogens, to attenuate the secretion of IL-8, and to induce hBD secretion in oral epithelial cells suggest that these components may have a beneficial effect against periodontal disease.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号