首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. RESULTS: We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. CONCLUSIONS: Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.  相似文献   

2.
Vertebrate eggs arrest at metaphase of meiosis II due to an activity known as cytostatic factor (CSF). CSF antagonizes the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C), preventing cyclin B destruction and meiotic exit until fertilization occurs. A puzzling feature of CSF arrest is that APC/C inhibition is leaky. Ongoing cyclin B synthesis is counterbalanced by a limited amount of APC/C-mediated cyclin B destruction; thus, cyclin B/Cdc2 activity remains at steady state. How the APC/C can be slightly active toward cyclin B, and yet restrained from ubiquitinating cyclin B altogether, is unknown. Emi2/XErp1 is the critical CSF component directly responsible for APC/C inhibition during CSF arrest. Fertilization triggers the Ca2+-dependent destruction of Emi2, releasing the APC/C to ubiquitinate the full pool of cyclin B and initiate completion of meiosis. Previously, we showed that a phosphatase maintains Emi2’s APC/C-inhibitory activity in CSF-arrested Xenopus egg extracts. Here, we demonstrate that phosphatase inhibition permits Emi2 phosphorylation at thr-545 and -551, which inactivates Emi2. Furthermore, we provide evidence that adding excess cyclin B to CSF extracts stimulates Cdc2 phosphorylation of these same residues, antagonizing Emi2-APC/C association. Our findings suggest a model wherein the pool of Emi2 acts analogously to a rheostat by integrating Cdc2 and phosphatase activities to prevent cyclin B overaccumulation and Cdc2 hyperactivity during the indefinite period of time between arrival at metaphase II and eventual fertilization. Finally, we propose that inactivation of Emi2 by Cdc2 permits mitotic progression during early embryonic cleavage cycles.  相似文献   

3.
To investigate the regulatory mechanisms of the cell cycle transition from M phase to M phase in meiotic cycles, a XENOPUS: oocyte extract that performs the M-M transition has been developed. Using the meiotic extract, we found that a low level of Cdc2 activity remained at the exit of meiosis I (MI), due to incomplete degradation of cyclin B. The inactivation of the residual Cdc2 activity induced both entry into S phase and tyrosine phosphorylation on Cdc2 after MI. Quantitative analysis demonstrated that a considerable amount of Wee1 was present at the MI exit and Cdc2 inhibitory phosphorylation during this period was suppressed by the dominance of Cdc2 over Wee1. Consistently, the addition of more than a critical amount of Wee1 to the extract induced Cdc2 inhibitory phosphorylation, changing the M-M transition into an M-S-M transition. Thus, the Cdc2 activity remaining at MI exit is required for suppressing entry into S phase during the meiotic M-M transition period.  相似文献   

4.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

5.
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.  相似文献   

6.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.  相似文献   

7.
In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56β/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.  相似文献   

8.
Reimann JD  Freed E  Hsu JY  Kramer ER  Peters JM  Jackson PK 《Cell》2001,105(5):645-655
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion from cycling Xenopus extracts strongly delays cyclin B accumulation and mitotic entry, whereas nondestructible Emi1 stabilizes APC substrates and causes a mitotic block. Emi1 binds the APC activator Cdc20, and Cdc20 can rescue an Emi1-induced block to cyclin B destruction. Our results suggest that Emi1 regulates progression through early mitosis by preventing premature APC activation, and may help explain the well-known delay between cyclin B/Cdc2 activation and cyclin B destruction.  相似文献   

9.
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.  相似文献   

10.
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3′,5′‐cyclic monophosphate (cAMP), guanosine 3′,5′‐cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase‐promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin‐dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase‐II (M‐II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M‐II arrest in rat oocytes.  相似文献   

11.
This report examines in detail the metabolism of the cyclin protein B1 during meiotic maturation and following the activation of mature mouse oocytes using immunoprecipitation of the radiolabelled protein. The net synthesis of cyclin B increases progressively during meiotic maturation, reaching its maximum levels at least 1 h before oocytes exit into metaphase of meiosis II (MII). This increase correlates with the rise in cdc2 kinase activity reported previously and suggests an association between the length of the first meiotic M phase (MI) and the net synthesis of cyclin B, that seems to regulate the time required for the cdc2 kinase to reach its maximum activity. Moreover, no marked degradation of cyclin B was observed before the MI to MII transition and that which occurs does so independently of the presence of microtubules, which are essential for cyclin degradation during metaphase II arrest and exit of oocytes into interphase of the first mitotic cell cycle. Cyclin B is degraded rapidly during the transitions MI to MII, MII to the first mitotic interphase and MII to an abortive third metaphase state (MIII). However, whilst its degradation was incomplete during the MI to MII transition, virtually no cyclin B protein was detected following both the MII to interphase and MII to MIII transitions. Thus, the decision of oocytes to exit into MIII, or interphase is not controlled at the level of cyclin B degradation. Lastly, in aging, non-activated oocytes, the net synthesis of cyclin B declines. Whereas, in activated eggs cultured in parallel although the rate of net synthesis declines initially, it is effectively ‘rescued’ being two-fold greater than in non-activated oocytes of an equivalent age. This gradual fall in the net synthesis of cyclin B observed in aging oocytes may contribute to the increasing ease with which they become activated, compared to recently ovulated oocytes.  相似文献   

12.
In the early embryonic cell cycle, exit from M phase is immediately followed by entry into S phase without an intervening gap phase. To understand the regulatory mechanisms for the cell cycle transition from M to S phase, we examined dependence on Cdc2 inactivation of cell-cycle events occurring during the M-S transition period, using Xenopus egg extracts in which the extent of Cdc2 inactivation at M phase exit was quantitatively controlled. The result demonstrated that MCM binding to and the initiation of DNA replication of nuclear chromatin occurred depending on the decrease of Cdc2 activity to critical levels. Similarly, we found that Cdc2 inhibitory phosphorylation and cyclin B degradation were turned on and off, respectively, depending on the decrease in Cdc2 activity. However, their sensitivity to Cdc2 activity was different, with the turning-on of Cdc2 inhibitory phosphorylation occurring at higher Cdc2 activity levels than the turning-off of cyclin B degradation. This means that, when cyclin B degradation ceases at M phase exit, Cdc2 inhibitory phosphorylation is necessarily activated. In the presence of constitutive synthesis of cyclin B, this condition favors the occurrence of the Cdc2 inactivation period after M phase exit, thereby ensuring progression through S phase. Thus, M phase exit and S phase entry are coordinately regulated by the Cdc2 activity level in the early embryonic cell cycle.  相似文献   

13.
In eukaryotes, mitosis entry is induced by activation of maturation‐promoting factor (MPF), which is regulated by a network of kinases and phosphatases. It has been suggested that Greatwall (GWL) kinase was crucial for the M‐phase entry and could maintain cyclin B–Cdc2 activity through regulation of protein phosphatase 2A (PP2A), a counteracting phosphatase of MPF. Here, the role of GWL was assessed during release of mouse oocytes from prophase I arrest. GWL was crucial for meiotic maturation in mouse oocytes. As a positive regulator for meiosis resumption, GWL was continually expressed in germinal vesicle (GV) and MII stage oocytes and two‐cell stage embryos. Additionally, GWL localized to the nucleus and dispersed into cytoplasm during GV breakdown (GVBD). Furthermore, downregulation of GWL or overexpression of catalytically‐inactive GWL inhibited partial meiotic maturation. This prophase I arrest induced by GWL depletion could be rescued by the PP2A inhibition. However, both GWL‐depleted and rescued oocytes had severe spindle defects that hardly reached MII. In contrast, oocytes overexpressing wild‐type GWL resumed meiosis and progressed to MII stage. Thus, our data demonstrate that GWL acts in a pathway with PP2A which is essential for prophase I exit and metaphase I microtubule assembly in mouse oocytes.  相似文献   

14.
15.
Vertebrate oocytes proceed through meiosis I before undergoing a cytostatic factor (CSF)-mediated arrest at metaphase of meiosis II. Exit from MII arrest is stimulated by a sperm-induced increase in intracellular Ca2+. This increase in Ca2+ results in the destruction of cyclin B1, the regulatory subunit of cdk1 that leads to inactivation of maturation promoting factor (MPF) and egg activation. Progression through meiosis I also involves cyclin B1 destruction, but it is not known whether Ca2+ can activate the destruction machinery during MI. We have investigated Ca2+ -induced cyclin destruction in MI and MII by using a cyclin B1-GFP fusion protein and measurement of intracellular Ca2+. We find no evidence for a role for Ca2+ in MI since oocytes progress through MI in the absence of detectable Ca2+ transients. Furthermore, Ca2+ increases induced by photorelease of InsP3 stimulate a persistent destruction of cyclin B1-GFP in MII but not MI stage oocytes. In addition to a steady decrease in cyclin B1-GFP fluorescence, the increase in Ca2+ stimulated a transient decrease in fluorescence in both MI and MII stage oocytes. Similar transient decreases in fluorescence imposed on a more persistent fluorescence decrease were detected in cyclin-GFP-injected eggs undergoing fertilization-induced Ca2+ oscillations. The transient decreases in fluorescence were not a result of cyclin B1 destruction since transients persisted in the presence of a proteasome inhibitor and were detected in controls injected with eGFP and in untreated oocytes. We conclude that increases in cytosolic Ca2+ induce transient changes in autofluorescence and that the pattern of cyclin B1 degradation at fertilization is not stepwise but exponential. Furthermore, this Ca2+ -induced increase in degradation of cyclin B1 requires factors specific to mature oocytes, and that to overcome arrest at MII, Ca2+ acts to release the CSF-mediated brake on cyclin B1 destruction.  相似文献   

16.
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.  相似文献   

17.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

18.
The Cdc25C phosphatase is a key activator of Cdc2/cyclin B that controls M-phase entry in eukaryotic cells. Here we discuss the regulation of Cdc25C by phosphorylation during the meiotic maturation of Xenopus oocytes. In G2 arrested oocytes, Cdc25C is phosphorylated on Ser287 and associated with 14-3-3 proteins. Entry of the oocytes into M-phase of meiosis is triggered by progesterone, which activates a signaling pathway leading to the dephosphorylation of Ser287, probably mediated by the PP1 phosphatase. The activation of Cdc25C during oocyte maturation correlates also with its phosphorylation on multiple sites. These phosphorylations involve several signaling pathways, including Polo kinases and MAP kinases, and might require also the inhibition of the PP2A phosphatase. Finally, Cdc25C is further phosphorylated by its substrate Cdc2/cyclin B, as part of an auto-amplification loop that ensures the high Cdc2/cyclin B activity level required to drive the oocyte through the meiotic cell cycle.  相似文献   

19.
The temporal control of mitotic protein degradation remains incompletely understood. In particular, it is unclear why the mitotic checkpoint prevents the anaphase-promoting complex/cyclosome (APC/C)-mediated degradation of cyclin B and securin in early mitosis, but not cyclin A. Here, we show that another APC/C substrate, NIMA-related kinase 2A (Nek2A), is also destroyed in pro-metaphase in a checkpoint-independent manner and that this depends on an exposed carboxy-terminal methionine-arginine (MR) dipeptide tail. Truncation of the Nek2A C terminus delays its degradation until late mitosis, whereas Nek2A C-terminal peptides interfere with APC/C activity in an MR-dependent manner. Most importantly, we show that Nek2A binds directly to the APC/C, also in an MR-dependent manner, even in the absence of the adaptor protein Cdc20. As similar C-terminal dipeptide tails promote direct association of Cdc20, Cdh1 and Apc10-Doc1 with core APC/C subunits, we propose that this sequence also allows a substrate, Nek2A, to directly bind the APC/C. Thus, although Cdc20 is required for the degradation of Nek2A, it is not required for its recruitment and this renders its degradation insensitive to the mitotic checkpoint.  相似文献   

20.
M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis. Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into, rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca(++)/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号