首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the role of neutral endopeptidase (NEP) on endothelin-1-induced contraction of the airway smooth muscle, we examined the contractile effect of endothelin-1 in the isolated guinea pig trachea and human bronchus in the presence or absence of NEP inhibitor phosphoramidon. After incubation with phosphoramidon (10(-8) to 10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the airway tissues in organ baths. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in a concentration-dependent fashion in both guinea pig trachea and human bronchus, and it shifted the concentration-response curves to the left. Because NEP is known to cleave tachykinins, we next studied whether endothelin-1 contracts airway tissues by releasing endogenous tachykinins from bronchial C-fibers. After incubation with phosphoramidon (10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the tissues that were treated with capsaicin to deplete the tachykinins. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in the capsaicin-treated tissues, suggesting that endothelin-1 causes the contraction, at least in part, without releasing tachykinins. In contrast to the effect of phosphoramidon, captopril (an angiotensin-converting enzyme inhibitor), leupeptin (a serine protease inhibitor), and bestatin (an aminopeptidase inhibitor) did not modulate the effect of endothelin-1-induced contraction in both guinea pig trachea and human bronchus. From these results, we conclude that NEP plays an important role in regulating endothelin-1-induced contraction in the guinea pig trachea and human bronchus.  相似文献   

2.
Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.  相似文献   

3.
To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.  相似文献   

4.
N-formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic analogue of bacterial chemotactic peptide, may play a role in airway hyperresponsiveness, and is cleaved by neutral endopeptidase-24.11 (enkephalinase). To determine the effect of FMLP on parasympathetic contraction of airway smooth muscle and its modulation by endogenous enkephalinase, we studied isolated rabbit tracheal ring segments under isometric conditions in vitro. FMLP did not cause muscle contraction, but it potentiated the contractile response to electrical field stimulation (EFS) in a dose-dependent fashion, with the maximal increase from the baseline response being 59.8 +/- 6.2% (mean +/- S.E.M., P less than 0.001), an effect that was abolished by t-Boc-Phe-Leu-Phe-Leu-Phe, partially inhibited by pyrilamine, but not by phentolamine or [D-Pro2,D-Trp7,9]substance P. In contrast, the contractile response to administered acetylcholine was not affected by FMLP. Pretreatment of tissues with thiorphan, an enkephalinase inhibitor, further potentiated the effect of FMLP on the EFS-induced contraction. These results suggest that FMLP facilitates cholinergic neurotransmission in rabbit airway smooth muscle probably by increasing acetylcholine release, and that this effect may be modulated by enkephalinase in the airway.  相似文献   

5.
To determine the role of endogenous neutral endopeptidase (NEP) (also called enkephalinase, EC 3.4.24.11) in regulating neurotensin-induced airway contraction, we used phosphoramidon, a specific NEP inhibitor, in the guinea pig. In studies in vitro, neurotensin and the COOH-terminal fragment neurotensin-(8-13) contracted strips of bronchial smooth muscle in a concentration-dependent fashion (P less than 0.001). In contrast, the NH2-terminal fragment neurotensin-(1-11) and the COOH-terminal fragment neurotensin-(12-13), the main fragments of neurotensin hydrolysis by NEP, had no effect. Phosphoramidon (10(-5) M) did not change resting tension but shifted the concentration-response curves to neurotensin to lower concentrations (P less than 0.001), whereas inhibitors of kininase II, aminopeptidases, serine proteases, and carboxypeptidase N were without effect. Removing the epithelium increased the contractile response to neurotensin (P less than 0.001), and phosphoramidon further increased the response to neurotensin in these tissues (P less than 0.001). Similar results were obtained in studies in vivo using aerosolized neurotensin and phosphoramidon. These results suggest that endogenous NEP in the airways modulates the effects of neurotensin on airway smooth muscle contraction by inactivating the peptide.  相似文献   

6.
To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.  相似文献   

7.
To elucidate mechanisms of platelet-activating factor (PAF)-induced contraction, we studied the effect of PAF on 203 canine tracheal smooth muscle (TSM) strips from 45 dogs in vitro in the presence and absence of platelets. PAF (10(-11) to 10(-7) M) alone caused no contraction of TSM even in the presence of airway epithelium. In the presence of 2 x 10(5) platelets/microliter, PAF was an extremely potent contractile agonist (threshold 10(-11) M). This response was inhibited by the PAF antagonist, CV-3988 (10(-6) M), and reversed by the serotonin antagonist, methysergide (EC50 = 3.7 +/- 0.79 x 10(-9) M). Neither atropine nor chlorpheniramine (10(-9) to 10(-6) M) attenuated the response to PAF + platelets. In the presence of platelets, 10(-7) M PAF caused an increase in perfusate concentration of serotonin from 0.93 +/- 0.037 x 10(-8) to 1.7 +/- 0.046 x 10(-8) M (P less than 0.001). Tachyphylaxis, previously demonstrated to be irreversible, was shown to be a platelet-dependent phenomenon; contraction could be repeated in the same TSM after addition of fresh platelets. We demonstrate that PAF-induced contraction of canine TSM is caused by the release of cellular intermediates such as serotonin from platelets. We also demonstrate the site of PAF-induced tachyphylaxis in airway smooth muscle contraction.  相似文献   

8.
This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 degrees C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 +/- 6% of the carbachol maximum. Mepyramine (5 X 10(-6) M) did not alter the contraction. Methylprednisolone (2 X 10(-5) M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6-28 X 10(-6) M) enhanced the peak antigen-induced contractions by 25 +/- 11% whereas 5,8,11,14-eicosatetraynoic acid (6.4 X 10(-5) M) selectively attenuated the antigen-induced contraction by 86 +/- 12%. Nordihydroguarietic acid (6-12 X 10(-6) M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1-2 X 10(-6) M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.  相似文献   

9.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

10.
Endothelium-dependence of contractile responses to endothelin-1 was examined in isolated canine basilar arteries. Within 2 hrs after mounting tissue preparations, endothelin-1 (10(-9) M) caused a monophasic tonic contraction that developed very slowly and was sustained in intact and endothelium-removed arteries. More than 5 hrs after tissue mounting, endothelin-1 (10(-9) M) caused a biphasic contraction consisting of phasic and tonic components in intact arteries, and caused a monophasic tonic contraction in endothelium-removed arteries. This phasic component was significantly decreased by aspirin (5 x 10(-5) M,), OKY-046 (10(-5) M) (a TXA2 synthetase inhibitor) and ONO-3708 (10(-8) M) (a TXA2 antagonist). The present experiments demonstrate that endothelin-1 causes an endothelium-independent tonic contraction and an endothelium-dependent phasic contraction in canine basilar arteries, and suggest that TXA2 plays a role as an endothelium-derived contracting factor.  相似文献   

11.
The media from cultured microvascular and macrovascular endothelial cells (conditioned media, CM) were collected and tested for constrictor activity in sheep coronary artery rings and tracheal smooth muscle strips in vitro (isometric force), expressed as percentage of contraction produced by 80 mM KCl. Both microvascular (micro) and macrovascular (macro) CM caused a sustained slow-onset contraction (P less than 0.05) of the coronary artery rings by 71 +/- 10% (micro; n = 7) and 67 +/- 8% (macro; n = 6) and tracheal smooth muscle strips by 33 +/- 14% (micro; n = 6) and 34 +/- 6% (macro; n = 11); the calcium antagonist gallopamil (10(-7) M) attenuated these effects by 25-55%. Unconditioned medium and medium conditioned by cultured tracheal smooth muscle cells had no constrictor activity on coronary artery rings or tracheal smooth muscle strips. Synthetic endothelin (ET-1) also produced contraction of coronary artery rings and tracheal smooth muscle strips. The mean levels of ET-1 measured by radioimmunoassay were 1,200 pg/ml in the macro CM and 33 pg/ml in the micro CM. Depleting macro CM of ET-1 by affinity columns constructed with protein A agarose and anti-ET-1 antibody removed the contractile activity for coronary artery rings and tracheal smooth muscle strips. Thus ET-1 did not appear to be the contractile substance in the micro CM. Preliminary characterization of the contractile substance in micro CM revealed that it was heat stable, had a molecular weight of less than 10,000, was inactivated by trypsin, and retained its activity after two cycles of freeze-thawing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The existence of substance P immunoreactive nerves in the trachea of guinea pig is known. In this study, capsaicin induced a long-lasting and marked contraction in the guinea pig trachea and nicotine-induced contraction was partially reduced in the capsaicin-treated muscle. Furthermore, the contractile response to nicotine (10(-5) M) in the presence of atropine (10(-7) M) was abolished by a substance P antagonist, [D-Arg1, D-Pro2, D-Trp7,9 Leu11]substance P (10(-5) M). These findings suggest that noncholinergic contractile response to nicotine may be due to the release of material(s) resembling substance P in the isolated tracheal smooth muscle preparation of guinea pig.  相似文献   

13.
The comparative effects of contractile agonists and physiological stimulation of the tracheal and bronchial smooth muscle (BSM) response were studied isometrically in situ in five Basenji-greyhound (BG) and six mongrel dogs. Frequency-response curves generated by bilateral stimulation of the vagus nerves (0-20 Hz, 15-20 V, 2-ms duration) elicited greater maximal contraction in mongrel trachea (36.8 +/- 8.1 vs. 26.9 +/- 4.0 g/cm; P less than 0.02) and exhibited greater responsiveness in mongrel BSM (half-maximal response to electrical stimulation 3.0 +/- 1.1 vs. 7.0 +/- 0.5 Hz; P less than 0.05) compared with BG dogs. However, muscarinic sensitivity to intravenous methacholine (MCh) was substantially greater in BG dogs; MCh caused contraction greater than 1.5 g/cm at a mean dose of 3.0 X 10(-10) mol/kg for BG dogs compared with 5.1 X 10(-9) mol/kg for mongrel controls (P less than 0.03, Mann-Whitney rank-sum test). In contrast to the muscarinic response, the contractile response elicited by intravenous norepinephrine after beta-adrenergic blockade was similar in trachea and bronchus for both mongrel and BG dogs. Our data confirm previous in vitro demonstration of tracheal hyporesponsiveness in BG dogs and demonstrate that the contraction resulting from efferent parasympathetic stimulation is less in the BG than mongrel dogs. However, postsynaptic muscarinic responsiveness of BG BSM is substantially increased. We conclude that a component of airway responsiveness in BG dogs depends directly on contractile forces generated postsynaptically that are nongeometry dependent, postjunctional, and agonist specific.  相似文献   

14.
Radioligand binding was conducted on airways of the rat and human, surgically subdivided into trachea, lung airways, and parenchyma. 3H-QNB bound uniformly to receptors in separate sections of the rat and human airway. Receptor densities generally were ranked: lung airways greater than trachea greater than parenchyma. Receptor subtypes were identified mostly by pirenzepine displacement of bound 3H-QNB. The rat trachea, and rat and human lung airways had a uniformly low affinity for pirenzepine while rat and human parenchyma demonstrated both high and low affinity pirenzepine binding. Inhibition of methacholine-stimulated smooth muscle contraction by the M1 receptor antagonist, pirenzepine, and M2 receptor antagonist, gallamine, was studied in rat trachea and bronchus in vitro. Schild plot pA2 values were compatible with low potency antagonism, thereby favoring the presence of M3 receptors at these smooth muscle sites. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) produced a decrease in peak tension in response to methacholine without changing the muscarinic receptor character (Kd 3H-QNB), population density (Bmax in fmol mg-1 protein), or function (methacholine EC50). These results indicate that muscarinic receptor heterogeneity exists in the airway of both laboratory rat and man. While the muscarinic receptor subserving airway smooth muscle contraction appears to be the M3 subtype, decreased contractile responses to methacholine by trachea and bronchus from reserpine-treated rats were receptor independent.  相似文献   

15.
We studied the effect of resting smooth muscle length on the contractile response of the major resistance airways (generations 0-5) in 18 mongrel dogs in vivo using tantalum bronchography. Dose-response curves to 10(-10) to 10(-7) mol/kg methacholine (MCh) were generated [at functional residual capacity (FRC)] by repeated intravenous bolus administration using tantalum bronchography after each dose. Airway constriction varied substantially with dose-equivalent stimulation and varied sequentially from trachea (8.8 +/- 2.2% change in airway diam) to fifth-generation bronchus (49.8 +/- 3.0%; P less than 0.001). Length-tension curves were generated for each airway to determine the airway diameter (i.e., resting in situ smooth muscle length) at which maximal constriction was elicited using bolus intravenous injection of 10(-8) mol/kg MCh. A Frank-Starling relationship was obtained for each airway; the transpulmonary pressure at which maximal constriction was elicited increased progressively from 2.50 +/- 1.12 cmH2O for trachea (approximately FRC) to 18.3 +/- 1.05 cmH2O for fifth-generation airways (approximately 50% TLC) (P less than 0.001). A similar relationship was obtained when change in airway diameter was plotted as a function of airway radius. We demonstrate substantial heterogeneity in the lung volumes at which maximal constriction is elicited and in distribution of parasympathomimetic constriction within the first few generations of resistance bronchi. Our data also suggest that lung hyperinflation may lead to augmented airway contractile responses by shifting resting smooth muscle length toward optimum resting smooth muscle length.  相似文献   

16.
A Botella  M Delvaux  J Frexinos  L Bueno 《Life sciences》1992,50(17):1253-1261
Effect of galanin and CCK8 were studied on isolated smooth muscle cells obtained from pig, guinea-pig, rat, rabbit and dog ileum circular muscle layer. Galanin as well as CCK8 induced a concentration-dependent contraction of pig, rat, rabbit and guinea-pig ileum smooth muscle cells. Maximal contraction ranged between 23.7 +/- 1.9% and 26.1 +/- 3.1% decrease in cell length from control in the presence of both peptides. This maximal contraction was obtained at 1 nM galanin in pig, rat, rabbit, 1 nM CCK8 in rat, rabbit, guinea-pig, at 10 nM galanin in guinea-pig and 10 nM CCK8 in pig. Concentrations of galanin inducing a half maximal contraction (EC50) ranged between 8 pM and 80 pM in these species. In dog, CCK8 induced a concentration-dependent contraction of ileum smooth muscle cells, with a maximal contraction (24.5 +/- 2.3%) at 1nM and an EC50 of 50 pM while galanin inhibited cell contraction induced by CCK8. The CCK-induced contraction was abolished at 10 nM galanin and 10 nM VIP. Concentrations of galanin and VIP inducing a half-maximal relaxation of contracted cells were 2 pM and 3 pM respectively. It is concluded that galanin may induce cell contraction of pig, guinea-pig, rat and rabbit ileum circular muscle layer and cell relaxation of dog ileum by a direct myogenic effect.  相似文献   

17.
Role of M2 muscarinic receptors in airway smooth muscle contraction   总被引:7,自引:0,他引:7  
Airway smooth muscle expresses both M2 and M3 muscarinic receptors with the majority of the receptors of the M2 subtype. Activation of M3 receptors, which couple to Gq, initiates contraction of airway smooth muscle while activation of M2 receptors, which couple to Gi, inhibits beta-adrenergic mediated relaxation. Increased sensitivity to intracellular Ca2+ is an important mechanism for agonist-induced contraction of airway smooth muscle but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization by acetylcholine (ACh) and endothelin-1 (ET-1) in porcine tracheal smooth muscle by measuring contractions at constant [Ca2+] in strips permeabilized with Staphylococcal alpha-toxin. Both ACh and ET-1 contracted airway smooth muscle at constant [Ca2+]. Pretreatment with pertussis toxin for 18-20 hours reduced ACh contractions, but had no effect on those of ET-1 or GTPgammaS. We conclude that the M2 muscarinic receptor contributes to airway smooth muscle contraction at constant [Ca2+] via the heterotrimeric G-protein Gi.  相似文献   

18.
We investigated whether the airway constrictive response to stimulation of bronchopulmonary C-fiber afferents is altered during the maturation process. Isometric tension was measured in airway rings isolated from three tracheobronchial locations (intrathoracic trachea and main and hilar bronchi) and compared in mature [M, 407 +/- 10 (SE) g body wt, n = 36] and immature (IM, 161 +/- 5 g body wt, n = 35) guinea pigs. Our results showed no difference in the ACh (10(-5) M)- or KCl (40 mM)-induced contraction between M and IM groups, regardless of the airway location. In sharp contrast, the concentration-response curves of 10(-8)-10(-6) M capsaicin were distinctly lower in IM hilar bronchi; for example, response to the same concentration of capsaicin (10(-6) M) was 89.2 +/- 15.3% of the response to 10(-5) M ACh in IM and 284.7 +/- 43.2% in M animals. Similar, but smaller, differences in the bronchoconstrictive response to capsaicin between IM and M groups were also observed in the trachea and main bronchus. Electrical field stimulation induced airway constriction in all three locations in M and IM groups. However, after administration of 10(-6) M atropine and 10(-6) M propranolol, electrical field stimulation-induced contraction was significantly smaller in the hilar bronchus of IM than M animals, and this difference was not prevented by pretreatment with 5 x 10(-5) M indomethacin. Although radioimmunoassay showed no difference in the tissue content of substance P between M and IM airways, the constrictive responses to exogenous substance P and neurokinin A were markedly greater in M airways at all three locations. In conclusion, the constriction of isolated airways evoked by C-fiber stimulation was significantly weaker in the IM guinea pigs, probably because of a less potent effect of tachykinins on the airway smooth muscle.  相似文献   

19.
Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.  相似文献   

20.
It has been hypothesized that the muscarinic receptor reserve for contraction of airway smooth muscle is an important determinant of the potency with which isoproterenol relaxes submaximal muscarinic contractions. The goals of this study were to inactivate, with phenoxybenzamine, a fraction of the muscarinic receptors present in canine tracheal smooth muscle, and then to determine whether this decrease in muscarinic receptor reserve altered the potency with which isoproterenol relaxed submaximal muscarinic contractions. Strips of smooth muscle were suspended from force transducers in vitro and preincubated with either vehicle (untreated) or phenoxybenzamine (10(-5) M) for 30 min. For muscarinic contractions induced by carbachol that were approximately 70-80% of maximum, the half-maximally effective concentration of isoproterenol was 2.4 +/- 0.8 x 10(-7) M for untreated strips but 5.8 +/- 1.3 x 10(-9) M for strips treated with phenoxybenzamine (n = 6, P less than 0.05). We concluded that treatment with phenoxybenzamine increased the sensitivity of a submaximal muscarinic contraction to isoproterenol. The results support the hypothesis that the muscarinic receptor reserve for contraction is an important determinant of the potency with which isoproterenol relaxes submaximal muscarinic contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号