首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Members of the phylum Acidobacteria are among the most abundant bacteria in soil. Although they have been characterized as versatile heterotrophs, it is unclear if the types and availability of organic resources influence their distribution in soil. The potential for organic resources to select for different acidobacteria was assessed using molecular and cultivation-based approaches with agricultural and managed grassland soils in Michigan. The distribution of acidobacteria varied with the carbon content of soil: the proportion of subdivision 4 sequences was highest in agricultural soils (ca. 41%) that contained less carbon than grassland soils, where the proportions of subdivision 1, 3, 4, and 6 sequences were similar. Either readily oxidizable carbon or plant polymers were used as the sole carbon and energy source to isolate heterotrophic bacteria from these soils. Plant polymers increased the diversity of acidobacteria cultivated but decreased the total number of heterotrophs recovered compared to readily oxidizable carbon. Two phylogenetically novel Acidobacteria strains isolated on the plant polymer medium were characterized. Strains KBS 83 (subdivision 1) and KBS 96 (subdivision 3) are moderate acidophiles with pH optima of 5.0 and 6.0, respectively. Both strains grew slowly (μ = 0.01 h(-1)) and harbored either 1 (strain KBS 83) or 2 (strain KBS 96) copies of the 16S rRNA encoding gene-a genomic characteristic typical of oligotrophs. Strain KBS 83 is a microaerophile, growing optimally at 8% oxygen. These metabolic characteristics help delineate the niches that acidobacteria occupy in soil and are consistent with their widespread distribution and abundance.  相似文献   

2.
A growing number of Acidobacteria strains have been isolated from environments worldwide, with most isolates derived from acidic samples and affiliated with subdivision 1. We recovered 18 Acidobacteria strains from an alkaline soil, among which 11 belonged to the previously uncultured subdivision 6. Various medium formulations were tested for their effects on Acidobacteria growth.  相似文献   

3.
The vertical and seasonal distribution and diversity of archaeal sequences was investigated in a hypersaline, stratified, monomictic lake, Solar Lake, Sinai, Egypt, during the limnological development of stratification and mixing. Archaeal sequences were studied via phylogenetic analysis of 16S rDNA sequences as well as denaturing gradient gel electrophoresis analysis. The 165 clones studied were grouped into four phylogenetically different clusters. Most of the clones isolated from both the aerobic epilimnion and the sulfide-rich hypolimnion were defined as cluster I, belonging to the Halobacteriaceae family. The three additional clusters were all isolated from the anaerobic hypolimnion. Cluster II is phylogenetically located between the genera Methanobacterium and Methanococcus. Clusters III and IV relate to two previously documented groups of uncultured euryarchaeota, remotely related to the genus Thermoplasma. No crenarchaeota were found in the water column of the Solar Lake. The archaeal community in the Solar Lake under both stratified and mixed conditions was dominated by halobacteria in salinities higher than 10%. During stratification, additional clusters, some of which may possibly relate to uncultured halophilic methanogens, were found in the sulfide- and methane-rich hypolimnion.  相似文献   

4.
In situ estimates of sediment nutrient flux are necessary to understand seasonal variations in internal loading in lakes. We investigated the sources and sinks of nutrients in the hypolimnion of a small (0.33 km2), relatively shallow (18 m max. depth), eutrophic lake (Lake Okaro, New Zealand) in order to determine changes in sediment nutrient fluxes resulting from a whole lake sediment capping trial using a modified zeolite phosphorus inactivation agent (Z2G1). Sediment nutrient fluxes in the hypolimnion were estimated as the residual term in a nutrient budget model that accounted for mineralisation of organic nutrients, nutrient uptake by phytoplankton and mixing, nitrification, adsorption/desorption and diffusion of dissolved nutrients at the thermocline. Of the total hypolimnetic phosphate and ammonium fluxes during one period of seasonal stratification (2007–08), up to 60 and 50%, respectively, were derived from the bottom sediments, 18 and 24% were due to mineralisation of organic species, 36 and 28% were due to phytoplankton uptake and 9 and 6% were from diffusion across the thermocline. Adsorption/desorption of phosphate to suspended solids and nitrification were of minor (<8%) importance to the total fluxes. Any reduction in sediment nutrient release by Z2G1 was small compared with both the total sediment nutrient flux and the sum of other hypolimnetic fluxes. Uneven sediment coverage of Z2G1 may have been responsible for the limited effect of the sediment capping layer formed by Z2G1.  相似文献   

5.
SUMMARY. The difference between the results of viable and total counting procedures for bacteria are exemplified by vertical profiles from a deep and a shallow lake and from seasonal changes in the epilimnion and hypolimnion of a shallow eutrophic lake. The viable count was, on average, 0.25% of the total count, the greatest difference being noted in the anoxic hypolimnion, probably due to the inadequacy of the viable counting procedure for the isolation of bacteria from such samples. There was a general trend for the more nutrient-rich waters to support larger bacterial populations but such observations did not provide any further information on the factors responsible for the population changes observed. Seasonal fluctuations in the counts are studied and the qualitative and quantitative changes resulting from artificial enclosure of water are discussed. Not all the temporal changes could be explained and short-term changes resulting from nutrient additions to the experimental enclosures were not always reproducible. Horizontal variability was examined, found to be significant and could play an important role where water movement and turbulence is considerable. Results from six sites sampled between 1969 and 1974, representing total and viable bacterial population estimates and a total of eighteen independent or regressor variables were then subjected to principal components analysis. Results taken from the whole water column showed the overwhelming effect of the process of stratification on the bacterial population accounting for 30%-60% of its variability. Secondary components representing algal productivity could account for 10% to 20% of the variability. Many of the chosen regressor variables were acting as measures of the same phenomenon without providing significant information on what affected the bacterial population. To overcome this problem results from the hypolimnion and epilimnion were analysed separately. The analysis demonstrated the importance of seasonal changes in nutrient concentrations in the epilimnion and the development of anoxic conditions in the hypolimnion. Algal biomass, phosphate concentration and the interaction of pH and ammonia appeared to be important. It was concluded that most of the variability in the bacterial population estimates could have been explained by five of the regressor variables and that the factors most likely to provide more information would include some measure of predation and lake retention time.  相似文献   

6.
The vertical and seasonal distribution and diversity of archaeal sequences was investigated in a hypersaline, stratified, monomictic lake, Solar Lake, Sinai, Egypt, during the limnological development of stratification and mixing. Archaeal sequences were studied via phylogenetic analysis of 16S rDNA sequences as well as denaturing gradient gel electrophoresis analysis. The 165 clones studied were grouped into four phylogenetically different clusters. Most of the clones isolated from both the aerobic epilimnion and the sulfide-rich hypolimnion were defined as cluster I, belonging to the Halobacteriaceae family. The three additional clusters were all isolated from the anaerobic hypolimnion. Cluster II is phylogenetically located between the genera Methanobacterium and Methanococcus. Clusters III and IV relate to two previously documented groups of uncultured euryarchaeota, remotely related to the genus Thermoplasma. No crenarchaeota were found in the water column of the Solar Lake. The archaeal community in the Solar Lake under both stratified and mixed conditions was dominated by halobacteria in salinities higher than 10%. During stratification, additional clusters, some of which may possibly relate to uncultured halophilic methanogens, were found in the sulfide- and methane-rich hypolimnion.  相似文献   

7.
The Acidobacteria show a widespread distribution in natural ecosystems. In this study, we analyzed the presence of Acidobacteria in freshwater ponds at Do?ana National Park (southwestern Spain). Nucleic acid sequence analysis, quantitative, real-time RT-PCR, and fluorescence in situ hybridization (FISH) were carried out. Acidobacteria in these aquatic environments were investigated using their 16S and 23S rDNA sequences and acidobacterial specific primer pairs through phylogenetic approaches. The presence of up to five subdivisions of Acidobacteria was detected during this study. The analyzed ponds exhibited distinctive patterns of acidobacterial clades. In order to detect their role in ecosystem functions, metabolically active Acidobacteria were detected based upon rRNA analyses. Quantitative, real-time RT-PCR showed a low percentage of metabolically active Acidobacteria at suboxic zones within the water column covered by surface Fe-rich films. Oxygen-saturated areas showed around 4% of total bacterial RNA belonging to Acidobacteria both in the water column and the sediment surface. The morphology of the most abundant Acidobacteria was revealed by FISH as cocci generally in pairs or chains. Enrichment cultures were also obtained and indicated a putative metabolism based on aerobic and heterotrophic characteristics likely taking advantage of the abundant organic matter present at the investigated sites. These results represent a significant contribution toward understanding the distribution and ecological role of the phylum Acidobacteria in natural ecosystems, specifically at Do?ana National Park freshwater ponds.  相似文献   

8.
Neutralization of acidic mine pit lakes by biotechnological means results in the production of labile metal-sulfides. These reaction products can theoretically be stored sustainably in the lake, provided reducing conditions are maintained at the lake bottom. In a field mesocosm experiment, we tested, if reducing conditions can be maintained in an acidic mine pit lake by the addition of a complex organic substrate.An enclosure of 30 m diameter was covered by a floating foil, and whey was repeatedly added to the water column to stimulate microbial respiration. A suspension of whey was successfully mixed into the enclosure by means of a boat motor. Whey was completely dissolved and subsequently consumed by microbial respiration in the water column. This resulted in oxygen consumption leading to anoxic conditions. About 10 mmol m−2 d−1 oxygen permanently entered the enclosure from the atmosphere, while a minor amount of oxygen was produced by primary production. By careful monitoring and repeated additions, it was possible to keep the bottom of the enclosure permanently anoxic, even during mixing periods in autumn and spring. Fe3+, however, was not reduced significantly. A laboratory experiment revealed that microbial iron reduction was inhibited by both low concentrations of organic substrates and low temperature. Since FeIII is a potential oxidizing agent, it is questionable, if the stability of metal-sulfides in acidic mine pit lakes can be increased by the addition of complex organic substrates.  相似文献   

9.
High frequency (200kHz) echosounding was used to determine vertical structuring and seasonal changes in the depth distributions of limnetic fish in three New Zealand lakes. Juvenile (f.l. 30–50 mm) and large-sized (f.l. 50–80 mm) smelt Retropinna retropinna were segregated into discrete layers by depth in all three lakes throughout the year. Larval and post-larval bullies Gobiomorphus cotidianus (f.l. 8–20 mm) formed a further layer between the layers of small and iarge-sized smelt. Although the depths of the large-sized smelt and bully layers changed on a seasonal basis, vertical segregation between the three layers of fish persisted throughout the year, even when the lakes were homothermal. Seasonal movements of fish were disrupted by the autumnal deoxygenation of the hypolimnion in Lake Rotoiti. The schools of large-sized smelt were forced to ascend towards the layer of bullies, but segregation between these smelt and the bullies was maintained as the smelt occupied a much reduced depth range above the hypolimnion, and just below the bullies. The winter descent of bullies, which precedes their transition to a benthic existence failed to occur in Lake Rotoiti, even though the lake was fully mixed at this time.  相似文献   

10.
Bacterioplankton biomass and dark fixation of inorganic carbon were measured in the highly humic (water colour up to 550 mg Pt l?1) and acidic lake, Mekkojärvi. Strong thermal and chemical stratification developed in the water column early in spring and led rapidly to anoxia in the hypolimnion, which extended to less than 1.0 m from the surface. In the epilimnion only small bacteria were abundant. In the anoxic zone both the abundance and the mean size of bacteria were considerably higher than in the epilimnion. These differences are thought to be the result of different grazing pressure from zooplankton in the two zones. In late summer a high concentration of bacteriochlorophyll d in the upper hypolimnion indicated a high density of photosynthetic bacteria. Bacterial biomass was similar to that of phytoplankton in the epilimnion, but 23 times higher in the whole water column. In August, dark fixation of inorganic radiocarbon in the anaerobic zone was 51% of the total 14C-incorporation and the contribution of light fixation was only 5.4%. In the polyhumic Mekkojarvi, bacterioplankton was evidently a potentially significant carbon source for higher trophic levels, but bacterioplankton production could not be supported by phytoplankton alone. Allochthonous inputs of dissolved organic matter probably support most of the bacterial production.  相似文献   

11.
Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH.  相似文献   

12.
The relationship between planktonic algae and bacteria in a small lake   总被引:1,自引:0,他引:1  
The seasonal changes and vertical distribution of the aerobic and anaerobic bacteria in a small edaphically eutrophic lake which exhibited thermal and chemical stratification are described. There was some correspondence between the phytoplankton and particularly the aerobic bacteria but this was not consistent. Increases in the numbers of anaerobic bacteria coincided with the low dissolved oxygen concentrations in the hypolimnion when algal populations were first senescent and then increasing actively in size.  相似文献   

13.
Kortmann  R. W.  Henry  D. D.  Kuether  A.  Kaufman  S. 《Hydrobiologia》1982,91(1):501-510
Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)  相似文献   

14.
As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH—even at low pH—and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.  相似文献   

15.
The community structure of bacterioplankton was studied at different depths (0 to 25 m) of a temperate eutrophic lake (Lake Plusssee in northern Germany) by using comparative 5S rRNA analysis. The relative amounts of taxonomic groups were estimated from 5S rRNA bands separated by high-resolution electrophoresis. Comparison of partial 5S rRNA sequences enabled detection of changes in single taxa over space and during seasons. Overall, the bacterioplankton community was dominated by 3 to 14 abundant (>4% of the total 5S rRNA) taxa. In general, the number of 5S rRNA bands (i.e., the number of bacterial taxa) decreased with depth. In the fall, when thermal stratification and chemical stratification were much more pronounced than they were in the spring, the correlation between the depth layers and the community structure was more pronounced. Therefore, in the fall each layer had its own community structure; i.e., there were different community structures in the epilimnion, the metalimnion, and the hypolimnion. Only three 5S rRNA bands were detected in the hypolimnion during the fall, and one band accounted for about 70% of the total 5S rRNA. The sequences of individual 5S rRNA bands from the spring and fall were different for all size classes analyzed except two bands, one of which was identified as Comamonas acidivorans. In the overall analysis of the depth profiles, the diversity in the epilimnion contrasted with the reduced diversity of the bacterioplankton communities in the hypolimnion, and large differences occurred in the composition of the epilimnion at different seasons except for generalists like C. acidivorans.  相似文献   

16.
The effects of viral lysis and heterotrophic nanoflagellate (HNF) grazing on bacterial mortality were estimated in a eutrophic lake (Lake Plusssee in northern Germany) which was separated by a steep temperature and oxygen gradient into a warm and oxic epilimnion and a cold and anoxic hypolimnion. Two transmission electron microscopy-based methods (whole-cell examination and thin sections) were used to determine the frequency of visibly infected cells, and a model was used to estimate bacterial mortality due to viral lysis. Examination of thin sections also showed that between 20.2 and 29.2% (average, 26.1%) of the bacterial cells were empty (ghosts) and thus could not contribute to viral production. The most important finding was that the mechanism for regulating bacterial production shifted with depth from grazing control in the epilimnion to control due to viral lysis in the hypolimnion. We estimated that in the epilimnion viral lysis accounted on average for 8.4 to 41.8% of the summed mortality (calculated by determining the sum of the mortalities due to lysis and grazing), compared to 51.3 to 91.0% of the summed mortality in the metalimninon and 88.5 to 94.2% of the summed mortality in the hypolimnion. Estimates of summed mortality values indicated that bacterial production was controlled completely or almost completely in the epilimnion (summed mortality, 66.6 to 128.5%) and the hypolimnion (summed mortality, 43.4 to 103.3%), whereas in the metalimnion viral lysis and HNF grazing were not sufficient to control bacterial production (summed mortality, 22.4 to 56.7%). The estimated contribution of organic matter released by viral lysis of cells into the pool of dissolved organic matter (DOM) was low; however, since cell lysis products are very likely labile compared to the bulk DOM, they might stimulate bacterial production. The high mortality of bacterioplankton due to viral lysis in anoxic water indicates that a significant portion of bacterial production in the metalimnion and hypolimnion is cycled in the bacterium-virus-DOM loop. This finding has major implications for the fate and cycling of organic nutrients in lakes.  相似文献   

17.
The species composition, biomass (measured as algal volumes) and chlorophyll concentration of epipelic algae was studies before (1977) and during (1978–1979) fertilization with phosphorus and nitrogen of Lake Gunillajaure, a small subarctic lake in northern Sweden.
The epipelic biomass, dominated by Cyanophyceae and Bacillariophyceae, was high (5.6–20.1 cm3 m−2) at all depths in the lake with the highest values in the hypolimnion (8–13.7 m). Calculated over mean depth it was 20 times higher than that of the phytoplankton. There was no significant increase in biomass during fertilization and neither did the species composition change. The chlorophyll concentration on the other hand were significantly higher in late 1978 and in 1979 which was probably an effect of the declining light climate caused by a large phytoplankton development in the lake. Constant seasonal biomass and species composition indicate a perennial epipelic community in this lake.  相似文献   

18.
We analysed the long-term dynamics (1980–2007) of hypolimnetic and epilimnetic bacterial abundances and organic carbon concentrations, both dissolved (DOC) and particulate (POC), in the deep holo-oligomictic Lake Maggiore, included in the Southern Alpine Lakes Long-Term Ecological Research (LTER) site. During the 28 years of investigation, bacterial abundance and POC concentrations did not decrease with declining phosphorus concentrations, while DOC concentrations showed a pronounced decrease in the epi- and hypolimnion. We used the annual mean total lake heat content and total annual precipitation as climate-related variables, and in-lake total phosphorus as a proxy for trophic state. The model (forward stepwise regression, FSR) showed that reduced anthropogenic pressure was more significant than climate change in driving the trend in DOC concentrations. Bacterial dynamics in the hypolimnion mirrored the fluctuations observed in the epilimnion, but average cell abundance was three times lower. The FSR model indicates that bacterial number variability was dependent on POC in the epilimnion and DOC in the hypolimnion. In the hypolimnion, cell biovolumes for rod and coccal morphotypes were significantly larger than in the epilimnion.  相似文献   

19.
We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.  相似文献   

20.
The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号