首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria and Neurodegeneration   总被引:2,自引:0,他引:2  
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. However, despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question “is mitochondrial dysfunction a necessary step in neurodegeneration?” is still unanswered. In this review, we highlight some of the major neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease) and discuss the role of the mitochondria in the pathogenetic cascade leading to neurodegeneration.  相似文献   

2.
Neurodegenerative diseases are a heterogeneous group of pathologies which includes complex multifactorial diseases, monogenic disorders and disorders for which inherited, sporadic and transmissible forms are known. Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene–environment interplay. There are many identified genetic determinants for neurodegeneration, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in animal models of the disease. However, there are similarly several identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. In this review we highlight some of the major neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Huntington’s disease, and prion diseases.) and discuss possible links of gene–environment interplay including, where implicated, mitochondrial genes.  相似文献   

3.
The abnormal assembly and deposition of specific proteins in the brain is the probable cause of most neurodegenerative disease afflicting the elderly. These “cerebral proteopathies” include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and a variety of other disorders. Evidence is accumulating that the anomalous aggregation of the proteins, and not a loss of protein function, is central to the pathogenesis of these diseases. Thus, therapeutic strategies that reduce the production, accumulation, or polymerization of pathogenic proteins might be applicable to a wide range of some of the most devastating diseases of old age.  相似文献   

4.
Recent studies suggest that iron enters cardiomyocytes via the L-type voltage-gated calcium channel (VGCC). The neuronal VGCC may also provide iron entry. As with calcium, extraneous iron is associated with the pathology and progression of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. VGCCs, ubiquitously expressed, may be an important route of excessive entry for both iron and calcium, contributing to cell toxicity or death. We evaluated the uptake of 45Ca2+ and 55Fe2+ into NGF-treated rat PC12, and murine N-2α cells. Iron not only competed with calcium for entry into these cells, but iron uptake (similar to calcium uptake) was inhibited by nimodipine, a specific L-type VGCC blocker, and enhanced by FPL 64176, an L-VGCC activator, in a dose-dependent manner. Taken together, these data suggest that voltage-gated calcium channels are an alternate route for iron entry into neuronal cells under conditions that promote cellular iron overload toxicity. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

5.
The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.  相似文献   

6.
Wnts function through the activation of at least three intracellular signal transduction pathways, of which the canonical β-catenin mediated pathway is the best understood. Aberrant canonical Wnt signaling has been involved in both neurodegeneration and cancer. An impairment of Wnt signals appears to be associated with aspects of neurodegenerative pathologies while overactivation of Wnt signaling is a common theme in several types of human tumors. Therefore, although therapeutic approaches aimed at modulating Wnt signaling in neurodegenerative and hyperproliferative diseases might impinge on the same molecular mechanisms, different pharmacological outcomes are required. Here we review recent developments on the understanding of the role of Wnt signaling in Alzheimer’s disease and CNS tumors, and identify possible avenues for therapeutic intervention within a complex and multi-faceted signaling pathway.  相似文献   

7.
“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models. Special issue in honor of Dr. Akitane Mori.  相似文献   

8.
The GLT-1 and GLAST astroglial transporters are the glutamate transporters mainly involved in maintaining physiological extracellular glutamate concentrations. Defects in neurotransmitter glutamate transport may represent an important component of glutamate-induced neurodegenerative disorders (such as amyotrophic lateral sclerosis) and CNS insults (ischemia and epilepsy). We characterized the protein expression of GLT-1 and GLAST in primary astrocyte-neuron cocultures derived from rat hippocampal tissues during neuron differentiation/maturation. GLT-1 and GLAST are expressed by morphologically distinct glial fibrillary acidic protein-positive astrocytes, and their expression correlates with the status of neuron differentiation/maturation and activity. Up-regulation of the transporters paralleled the content of the synaptophysin synaptic vesicle marker p38, and down-regulation was a consequence of glutamate-induced neuronal death or the reduction of synaptic activity. Finally, soluble factors in neuronal-conditioned media prevented the down-regulation of the GLT-1 and GLAST proteins. Although other mechanisms may participate in regulating GLT-1 and GLAST in the CNS, our data indicate that soluble factors dependent on neuronal activity play a major regulating role in hippocampal cocultures.  相似文献   

9.
Dopaminergic agonists have been usually used as adjunctive therapy for the cure of Parkinson’s disease (PD). It is generally believed that treatment with these drugs is symptomatic rather then curative and does not stop or delay the progression of neuronal degeneration. However, several DA agonists of the DA D2–receptor family (including D2, D3 and D4-subtypes) have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental PD models. Here we summarize some recent data from our and other groups underlining the wide pharmacological spectrum of DA agonists currently used for treating PD patients. In particular, the mechanism of action of different DA agonists does not appear to be restricted to the stimulation of selective DA receptor subtypes being these drugs endowed with intrinsic, independent, and peculiar antioxidant effects. This activity may represent an additional pharmacological property contributing to their clinical efficacy in PD. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

10.
The accumulation of oligomeric species of β-amyloid protein in the brain is considered to be a key factor that causes Alzheimer’s disease (AD). However, despite many years of research, the mechanism of neurotoxicity in AD remains obscure. Recent evidence strongly supports the theory that Ca2+ dysregulation is involved in AD. Amyloid proteins have been found to induce Ca2+ influx into neurons, and studies on transgenic mice suggest that this Ca2+ influx may alter neuronal excitability. The identification of a risk factor gene for AD that may be involved in the regulation of Ca2+ homeostasis and recent findings which suggest that presenilins may be involved in the regulation of intracellular Ca2+ stores provide converging lines of evidence that support the idea that Ca2+ dysregulation is a key step in the pathogenesis of AD. Special issue article in Honor of Dr. Graham Johnston.  相似文献   

11.
Mitochondrial Complex I [NADH Coenzyme Q (CoQ) oxidoreductase] is the least understood of respiratory complexes. In this review we emphasize some novel findings on this enzyme that are of relevance to the pathogenesis of neurodegenerative diseases. Besides CoQ, also oxygen may be an electron acceptor from the enzyme, with generation of superoxide radical in the mitochondrial matrix. The site of superoxide generation is debated: we present evidence based on the rational use of several inhibitors that the one-electron donor to oxygen is an iron-sulphur cluster, presumably N2. On this assumption we present a novel mechanism of electron transfer to the acceptor, CoQ. Complex I is deeply involved in pathological changes, including neurodegeneration. Complex I changes are involved in common neurological diseases of the adult and old ages. Mitochondrial cytopathies due to mutations of either nuclear or mitochondrial DNA may represent a useful model of neurodegeneration. In this review we discuss Parkinson’s disease, where the pathogenic involvement of Complex I is better understood; the accumulated evidence on the mode of action of Complex I inhibitors and their effect on oxygen radical generation is discussed in terms of the aetiology and pathogenesis of the disease. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

12.
Several lines of evidence support the neuroprotective action of cyclooxygenase-2 (COX-2) inhibitors in various models of Parkinson’s disease (PD). In the current study, we investigated the neuroprotective properties of several COX inhibitors against 1-methyl-4-phenylpyridinium (MPP+) in neuroblastoma Neuro 2A (N-2A) cells in vitro and the protection against degeneration of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons after the administration of 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) in C57/BL6 male mice. The data obtained demonstrate a lack of protective effects observed by COX 1-2 inhibitors ibuprofen and acetylsalicylic acid against MPP+ toxicity in N-2A, where piroxicam was protective in a dose dependent manner (MPP+ control: 15 ± 2% MPP+ piroxicam: 5 mM 89 ± 4%). The data also indicate a drop in mitochondrial oxygen (O2) consumption and ATP during MPP+ toxicity with no restoration of mitochondrial function concurrent to a heightened concentration of somatic ATP during piroxicam rescue. These findings indicate that the neuroprotective effects of COX inhibitors against MPP+ are not consistent, but that piroxicam may work through an unique mechanism to propel anaerobic energy metabolism. On the other hand, using mice, piroxicam (20 mg/kg) was effective against MPTP-induced dopaminergic degeneration in the (SNc) and loss of locomotive function in mice. Administering a 3 day pre-treatment of piroxicam (20 mg/kg) was effective in antagonizing the losses in SNc tyrosine hydroxylase protein expression, SNc DA concentration and associated anomaly in ambulatory locomotor activity. It was concluded from these findings that piroxicam is unique among COX inhibitors in providing very significant neuroprotection against MPP+ in vitro and in vivo.  相似文献   

13.
Although the etiology and pathogenesis of Alzheimer’s disease, Pick’s disease, and amyotrophic lateral sclerosis are still unknown, it has been suggested that perturbations in element metabolism may play a role. Even if not causative factors, these imbalances may prove to be markers that could aid in diagnosis. We have employed a sequential neutron activation analysis (NAA) procedure to determine elemental concentrations in brain, hair, fingernails, blood, and cerebrospinal fluid (CSF) of these patients and age-matched controls. Samples are first irradiated with accelerator-produced 14-MeV neutrons for determination of nitrogen and phosphorus, then with reactor thermal neutrons for the instrumental determination of 16–18 minor and trace elements, and, finally, reactor-irradiated again, followed by a rapid radiochemical separation procedure (RNAA) to determine four additional elements. Major advantages of NAA are: (1) its simultaneous multielement capability; (2) the relative freedom from reagent and laboratory contamination; (3) the absence of major matrix effects; and (4) an adequate sensitivity for most elements of interest. Ranges of concentrations by INAA and RNAA in selected control tissues and interelement correlations in control brain are presented to illustrate results obtained by the procedure. Longitudinal studies of tissues from Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) patients are still in progress.  相似文献   

14.
Molecular neuroimaging based on annihilation radiation tomographic (ART) techniques such as positron emission tomography (PET), in conjunction with related biomarkers in plasma and cerebrospinal fluid (CSF), are proving valuable in the early and differential diagnosis of Alzheimer's disease (AD). With the advent of new therapeutic strategies aimed at reducing beta-amyloid (Abeta) burden in the brain to potentially prevent or delay functional and irreversible cognitive loss, there is increased interest in developing agents that allow assessment of Abeta burden in vivo. Abeta burden as assessed by molecular imaging matches histopathological reports of Abeta plaque distribution in aging and dementia and appears more accurate than FDG for the diagnosis of AD. Abeta imaging is also a very powerful tool in the differential diagnosis of AD from fronto-temporal dementia (FTD). Although Abeta burden as assessed by PET does not correlate with measures of cognitive decline in AD, it does correlate with memory impairment and rate of memory decline in mild cognitive impairment (MCI) and healthy older subjects. Approximately 30% of asymptomatic controls present cortical (11)C-PiB retention. These observations suggest that Abeta deposition is not part of normal ageing, supporting the hypothesis that Abeta deposition occurs well before the onset of symptoms and is likely to represent preclinical AD. Further longitudinal observations are required to confirm this hypothesis and to better elucidate the role of Abeta deposition in the course of Alzheimer's disease.  相似文献   

15.
Alzheimer’s disease (AD) is characterized by deposits of amyloid in various tissues. The neuronal cytotoxicity of Aβ peptides is attributed not only to various mechanisms but also to amyloid fibrils and soluble oligomeric intermediates. Consequently, finding molecules to prevent or reverse the oligomerization and fibrillization of Aβ could be of therapeutic value in the treatment of AD. We show that piceid, a polyphenol of the stilbene family, destabilized fibrils and oligomers to give back monomers that are not neurotoxic molecules. The mechanism of this destabilization could be a dynamic interaction between the polyphenol and the Aβ that could open the hydrophobic zipper and shift the reversible equilibrium “random coil⇔β-sheet” to the disordered structure.  相似文献   

16.
Leucine-rich repeat kinase 2 (LRRK2) is a member of the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal Roc domain). Mutations in the LRRK2 gene lead to autosomal dominant Parkinsonism. We have cloned the porcine LRRK2 cDNA in an attempt to characterize conserved and therefore likely functional domains. The LRRK2 cDNA contains an open reading frame of 7,578 bp. The predicted LRRK2 protein consists of 2,526 amino acids of 86–93% identity with its mammalian couterparts. The deduced amino acid sequence of encoded porcine LRRK2 protein displays extensive homology with its human counterpart, with greatest similarities in those regions that contain the kinase domain, the Roc domain and the COR motif. Expression of porcine LRRK2 mRNA in various organs and tissues is similar to its human counterpart and not limited to the brain. The obtained data show that the LRRK2 sequence and expression patterns are conserved across species. The porcine LRRK2 gene was mapped to chromosome 5q25. The results obtained suggest that the LRRK2 gene might be of particular interest in our attempt to generate a transgenic porcine model for Parkinson’s disease. The sequence of the porcine LRRK2 cDNA, encoding the LRRK2/dardarin protein, and the genomic sequence of LRRK2 have been submitted to DDBJ/EMBL/GenBank under the Accessions Numbers EU019992, and EU019994, respectively.  相似文献   

17.
(1) Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of polymorphic CAG repeats beyond 36 at exon 1 of huntingtin gene (htt). To study cellular effects by expressing N-terminal domain of Huntingtin (Htt) in specific cell lines, we expressed exon 1 of htt that codes for 40 glutamines (40Q) and 16Q in Neuro2A and HeLa cells. (2) Aggregates and various apoptotic markers were detected at various time points after transfection. In addition, we checked the alterations of expressions of few apoptotic genes by RT-PCR. (3) Cells expressing exon 1 of htt coding 40Q at a stretch exhibited nuclear and cytoplasmic aggregates, increased caspase-1, caspase-2, caspase-8, caspase-9/6, and calpain activations, release of cytochrome c and AIF from mitochondria in a time-dependent manner. Truncation of Bid was increased, while the activity of mitochondrial complex II was decreased in such cells. These changes were significantly higher in cells expressing N-terminal Htt with 40Q than that obtained in cells expressing N-terminal Htt with 16Q. Expressions of caspase-1, caspase-2, caspase-3, caspase-7, and caspase-8 were increased while expression of Bcl-2 was decreased in cells expressing mutated Htt-exon 1. (4) Results presented in this communication showed that expression of mutated Htt-exon 1 could mimic the cellular phenotypes observed in Huntington’s disease and this cell model can be used for screening the agents that would interfere with the apoptotic pathway and aggregate formation.  相似文献   

18.
19.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with a prevalence of 1–2% in people over the age of 50. Mitochondrial dysfunction occurred in PD patients showing a 15–30% loss of activity in complex I. Asiatic acid (AA), a triterpenoid, is an antioxidant and used for depression treatment, but the effect of AA against PD-like damage has never been reported. In the present study, we investigated the protective effects of AA against H2O2 or rotenone-induced cellular injury and mitochondrial dysfunction in SH-SY5Y cells. Mitochondrial membrane potential (MMP) and the expression of voltage-dependent anion channel (VDAC) were detected with or without AA pretreatment following cellular injury to address the possible mechanisms of AA neuroprotection. The results showed that pre-treatment of AA (0.01–100 nM) protected cells against the toxicity induced by rotenone or H2O2. In addition, MMP dissipation occurred following the exposure of rotenone, which could be prevented by AA treatment. More interestingly, pre-administration of AA inhibited the elevation of VDAC mRNA and protein levels induced by rotenone(100 nM) or H2O2 (300 μM).These data indicate that AA could protect neuronal cells against mitochondrial dysfunctional injury and suggest that AA might be developed as an agent for PD prevention or therapy. Special issue article in honor of Dr. Akitane Mori.  相似文献   

20.
During brain aging and progression of Alzheimer’s disease, the levels of Aβ and proinflammatory cytokines accumulate very early in the pathogenic process prior to any major degenerative changes. Accumulation of these molecules may impair with signal transduction pathways critical for neuronal health. Neurotrophin signaling is a critical mechanism involved in synaptic plasticity, learning and memory and neuronal health. We have recently shown that exposure to low levels of Aβ impairs BDNF trkB signal transduction, suppressing the Ras/ERK, and the PI3-K/Akt pathways but not the PLCγ pathway. As a result, downstream regulation of gene expression and neuronal viability are impaired. Recently, we have found that at least three agents – Aβ, TNFα, Il-1β – suppress TrkB signaling and act via a common and novel mechanism. These factors all regulate the docking proteins (e.g., IRS and Shc) that link the activated Trk receptor to downstream effectors. While this is a novel mechanism underlying regulation of Trk signaling, such a mechanism has been identified for the insulin/IGF-1 receptor in the presence of proinflammatory cytokines and is one of the mechanisms for insulin/IGF-resistance, which is a key risk factor for type II diabetes (1). We suggest that accumulation of AB and proinflammatory cytokines during aging generates in the brain a “neurotrophin resistance” state that places the brain at risk for cognitive decline and dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号