首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column.  相似文献   

2.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

3.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

4.
Xanthomonas maltophilia ATCC 17666 is an obligate aerobe that accumulates nitrite when grown on nitrate. Spectra of membranes from nitrate-grown cells exhibited b-type cytochrome peaks and A615-630 indicative of d-type cytochrome but no absorption peaks corresponding to c-type cytochromes. The nitrate reductase (NR) activity was located in the membrane fraction. Triton X-100-extracted reduced methyl viologen-NRs were purified on DE-52, hydroxylapatite, and Sephacryl S-300 columns to specific activities of 52 to 67 μmol of nitrite formed per min per mg of protein. The cytochrome-containing NRI separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis into a 135-kDa α-subunit, a 64-kDa β-subunit, and a 23-kDa γ-subunit with relative band intensities indicative of a 1:1:1 α/β/γ subunit ratio and a Mr of 222,000. The electronic spectrum of dithionite-reduced purified NR displayed peaks at 425, 528, and 558 nm, indicative of the presence of a cytochrome b, an interpretation consistent with the pyridine hemochrome spectrum formed. The cytochrome b of the NR was reduced under anaerobic conditions by menadiol and oxidized by nitrate with the production of nitrite. This NR contained 0.96 Mo, 12.5 nonheme iron, and 1 heme per 222 kDa: molybdopterin was detected with the Neurospora crassa nit-1 assay. A smaller reduced methyl viologen-NR (169 kDa), present in various concentrations in the Triton X-100 preparations, lacked a cytochrome spectrum and did not oxidize menadiol. The characteristics of the NRs and the absence of c-type cytochromes provide insights into why X. maltophilia accumulates nitrite.  相似文献   

5.
Components I and II of cytochrome cd1 which had different spectral features were purified from the aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. Component I showed an absorption maxima at 700 and 406 nm in the oxidized form, and at 621, 552.5, 548 and 416 nm in the reduced form. Component II showed an absorption maxima at 635 and 410 nm in the oxidized form and at 628, 552.5, 548 and 417 nm in the reduced form. The relative molecular mass, Mr, of both cytochromes was determined to be 135,000 with two identical subunits. Components I and II showed pI values of 7.6 and 6.8, respectively. The redox potential of hemes ranged from +234 mV to +242 mV, except for the heme d1 of component I (Em7 = +134 mV). Components I and II showed both cytochrome c oxidase and nitrite reductase activities. Cytochrome c oxidase activity was strongly inhibited by a low concentration of nitrite and cyanide. Erythrobacter cytochromes c-551 and c-552 were utilized as electron donors for the cytochrome c oxidase reaction. The high affinity of cytochrome c-552 to component II (Km = 1.27 microM) suggested a physiological significance for this cytochrome. Erythrobacter cytochromes cd1 are unique in their presence in cells grown under aerobic conditions as compared to other bacterial cytochromes cd1 which are formed only under denitrifying conditions.  相似文献   

6.
Illumination of chromatophore preparations from Rhodopseudomonas spheroides causes the oxidation of a cytochrome c and a slight oxidation of a cytochrome b with a maximum at 560nm. When illuminated in the presence of antimycin A the oxidation of cytochrome c was more pronounced and cytochrome b(560) was reduced; the dark oxidation of cytochrome b(560) was biphasic in the presence of succinate, but not in the presence of NADH, a less effective reductant. Split-beam spectroscopy showed that, in addition to the reduction of cytochrome b(560), another pigment with maxima at 565 and 537nm. was reduced and was more rapidly oxidized in the dark than cytochrome b(560). This pigment, tentatively identified as cytochrome b(565), was also detected in spectra at 77 degrees k, after brief illumination at room temperature; the maxima at 77 degrees k were at 562 and 536nm. In the absence of antimycin A, light caused a transient reduction of cytochrome b(565) and an oxidation of cytochrome b(560). Dark oxidation of b(565) was rapid, even in the presence of antimycin A and succinate. Difference spectra, at 77 degrees k, of ascorbate-reduced minus succinate-reduced chromatophores or of anaerobic succinate-reduced minus aerobic succinate-reduced chromatophores suggested that two cytochromes c were present, with maxima at 547 and 549nm. When chromatophores frozen at 77 degrees k were illuminated both these cytochromes c were oxidized, indicating a close association with the photochemical reaction centre. A scheme involving two reaction centres is proposed to explain these results.  相似文献   

7.
Soluble c-type cytochromes were partially purified from Paracoccus denitrificans cells grown in succinate- and methanol-limited aerobic, nitrate-limited anaerobic and oxygen-limited chemostat cultures. Five c types could be distinguished with the following apparent molecular masses, absorption maxima and midpoint potentials. (a) 9.2 kDa, 549 nm and +190 mV; (b) 14 kDa, 549 nm and +227 mV; (c) 22 kDa, 552 nm and +190 mV; (d) 30 kDa, 552.7 nm and +160 mV; (e) 45 kDa, a dihaem: 555 nm, +128 mV and 551 nm, -163 mV. The 14-kDa polypeptide was present under all growth conditions examined and most probably is the already well characterized cytochrome c550. In methanol-limited grown cells three additional cytochromes were found, the 9.2-kDa, 22-kDa and 30-kDa ones. Under oxygen-limited conditions the 45-kDa and under anaerobic growth conditions small quantities of the 30-kDa and 45-kDa cytochromes c were present. Based on the apparent molecular masses the 14-kDa, 22-kDa, 30-kDa and 45-kDa cytochromes may also be present in membrane-fractions.  相似文献   

8.
The enzymatic activities and the cytochrome components of the respiratory chain were investigated with membrane fractions from chemoheterotrophically growth Rhodopseudomonas palustris. Whereas the level of electron transfer carriers was not distinctly affected by a change of the culture conditions, the potential activities of the enzymes were clearly increased when the cells were grown aerobically. Reduced-minus oxidized difference spectra of the membrane fractions prepared from dark aerobically grown cells revealed the presence of three beta-types cytochromes b561, b560 and b558, and at least two c-type cytochromes c556 and c2 as electron carriers in the electron transfer chain. Cytochrome of a-type could not be detected in these membranes. Reduced plus CO minus reduced difference spectra of the membrane fractions were indicative of cytochrome o, which may be equivalent to cytochrome b560, appearing in substrate-reduced minus oxidized difference spectra. Cytochrome o was found to be the functional terminal oxidase. CO difference spectra of the high speed supernatant fraction indicated the presence of cytochrome c'. Succinate and NADH reduced the same types of cytochromes. However, a considerable amount of cytochrome b561 with associated beta and gamma bands at 531 and 429 nm, respectively, was reducible by succinate, but not by NADH. A substantial fraction of the membrane-bound b-type cytochrome was non-substrate reducible and was found in dithionite-reduced minus substrate-reduced spectra. Cytochrome c2 may be localized in a branch of the electron transport system, with the branch-point at the level of ubiquinone. The separate pathways rejoined at a common terminal oxidase. Two terminal oxidases with different KCN sensitivity were present in the respiratory chain, one of which was sensitive to low concentrations of KCN and was connected with the cytochrome chain. The other terminal oxidase which was inhibited only by high concentrations of cyanide was located in a branched pathway, through which the electrons could flow from ubiquinone to oxygen bypassing the cytochrome chain.  相似文献   

9.
Cytochrome c' was crystallized from Achromobacter xylosoxidans GIFU 543. The cytochrome was a basic protein and its molecular weight was 28,000. The pyridine ferrohemochrome showed absorption peaks at 415, 521, and 551 nm. The absorption spectra of the oxidized and reduced forms at neutral pH were almost the same as those of other cytochromes c' reported already. The reduced cytochrome c' reacted with CO and NO, and the NO complex showed a characteristic absorption spectrum. The midpoint redox potential of the hemoprotein was measured to be + 110 mV at pH 7.2.  相似文献   

10.
A method is described for the preparation of mitochondria from the slime mould Physarum polycephalum; the mitochondria were not coupled. P. polycephalum mitochondria oxidized added NADH via a rotenone-insensitive pathway, but the oxidation of malate plus glutamate was rotenone sensitive; both of these substrates reduced much less cytochrome b than did succinate, in both aerobic and anaerobic steady states. Spectroscopy at 77 degrees K separated three absorption maxima in the alpha-band region, at 560nm, 553nm and one at 547nm due to cytochrome c. The absorption at 553nm was increased in the aerobic steady state by the addition of 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that it was due to a b-type cytochrome. All three absorption maxima appeared in the aerobic steady state after the addition of a range of substrates. The respiratory activity with different substrates and the response to inhibitors of respiration were similar to those previously described for fungus mitochondria (Weiss et al., 1970; Erickson & Ashworth, 1969). When grown under conditions of haem limitation the mitochondria contained a lower concentration of cytochromes than normal.  相似文献   

11.
Significant nitrate reductase activity was detected in mutants of Salmonella typhimurium which mapped at or near chlC and which were incapable of growth with nitrate as electron acceptor. The same mutants were sensitive to chlorate and performed sufficient nitrate reduction to permit anaerobic growth with nitrate as the sole nitrogen source in media containing glucose. The mutant nitrate-reducing protein did not migrate with the wild-type nitrate reductase in polyacrylamide electrophoretic gels. Studies of the electrophoretic mobility in gels of different polyacrylamide concentration revealed that the wild-type and mutant nitrate reductases differed significantly in both size and charge. The second enzyme also differed from the wild-type major enzyme in its response to repression by low pH and its lack of response to repression by glucose. The same mutants were found to be derepressed for nitrite reductase and for a cytochrome with a maximal reduced absorbance at 555 nm at 25°C. This cytochrome was not detected in preparations of the wild type grown under the same conditions. Extracts of these mutants contained normal amounts of the b-type cytochromes which, in the wild type, were associated with nitrate reductase and formate dehydrogenase, respectively, although they could not mediate the oxidation of these cytochromes with nitrate. They were capable of oxidizing the derepressed 555-nm peak cytochrome with nitrate. It is suggested that these mutants synthesize a nitrate-reducing enzyme which is distinct from the chlC gene product and which is repressed in the wild type during anaerobic growth with nitrate.  相似文献   

12.
M C Liu  W J Payne  H D Peck  Jr    J LeGall 《Journal of bacteriology》1983,154(1):278-286
Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions.  相似文献   

13.
Cell suspensions of Campylobacter fetus subsp. intestinalis grown microaerophilically in complex media consumed oxygen in the presence of formate, succinate, and DL-lactate, and membranes had the corresponding dehydrogenase activities. The cells and membranes also had ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity which was cyanide sensitive. The fumarate reductase activity in the membranes was inhibited by p-chloromercuriphenylsulfonate, and this enzyme was probably responsible for the succinate dehydrogenase activity. Cytochrome c was predominant in the membranes, and a major proportion of this pigment exhibited a carbon monoxide-binding spectrum. Approximately 60% of the total membrane cytochrome c, measured with dithionite as the reductant, was also reduced by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. A similar proportion of the membrane cytochrome c was reduced by succinate under anaerobic conditions, whereas formate reduced more than 90% of the total cytochrome under these conditions. 2-Heptyl-4-hydroxyquinoline-N-oxide inhibited reduction of cytochrome c with succinate, and the reduced spectrum of cytochrome b became evident. The inhibitor delayed reduction of cytochrome c with formate, but the final level of reduction was unaffected. We conclude that the respiratory chain includes low- and high-potential forms of cytochromes c and b; the carbon monoxide-binding form of cytochrome c might function as a terminal oxidase.  相似文献   

14.
A study was made of the rapid oxidation kinetics of the cytochromes of Escherichia coli. The b-type cytochromes were kinetically heterogeneous, with one species (presumably cytochrome o) oxidized so rapidly that it could fully support observed oxidation rates. Cytochrome d but not cytochrome a1 was also kinetically competent to support respiration. However, in cells grown anaerobically in the presence of NO3-, cytochrome d exhibited slow oxidation kinetics and a red-shift in its reduced-minus-oxidized difference spectrum.  相似文献   

15.
1. Spectrophotometric analysis of intact cells of Schizosaccharomyces pombe, harvested from exponentially growing cultures during the phase of glucose repression, revealed the presence of cytochromes a+a(3), c and at least two species of cytochrome b. 2. An absorption maximum at 554nm at 77 degrees K, previously attributed to cytochrome c(1), has been identified as a b-type cytochrome. 3. CO-difference spectra reveal the presence of cytochromes P-420 and P-450 in addition to cytochrome a(3). 4. The cell cycle was analysed by separation of cells into classes representing successive stages in the cell cycle by isopycnic zonal centrifugation. 5. Cytochromes c(548), b(554) and b(560) each exhibited a single broad maximum of synthesis during the cell cycle. 6. Amounts of cytochromes a+a(3) and b(563) (tentatively identified as cytochrome b(T) by its reaction on pulsing anaerobic cell suspensions with O(2)) oscillated in phase, and showed two maxima during the cycle; the second maximum of cytochromes a+a(3) was coincident with a maximum of activity of enzymically active cytochrome c oxidase. 7. The amount of cytochrome P-420 decreased during the first three-quarters of the cell-cycle, whereas that of cytochrome P-450 increased during this period. 8. The discrepancy between spectrophotometric and enzymic assay of cytochrome c oxidase, the changing ratio of cytochrome a(3)/cytochrome a and the relationship between changes in cellular content of cytochromes and previous observations on respiratory oscillations during the cell cycle are discussed.  相似文献   

16.
Suharti  Heering HA  de Vries S 《Biochemistry》2004,43(42):13487-13495
Bacillus azotoformans is a Gram-positive denitrifying soil bacterium, which is capable of respiring nitrate, nitrite, nitric oxide, and nitrous oxide under anaerobic conditions. It contains a unique menaquinol-dependent nitric oxide reductase (qCu(A)NOR) with a Cu(A) center in its small subunit. The qCu(A)NOR exhibits menaquinol-dependent NO reductase activity, whereas reduced horse heart cytochrome c was inactive. Here we describe the purification of three membrane-bound c cytochromes from B. azotoformans. Their apparent molecular masses on SDS-PAGE are approximately 11 kDa. At neutral pH, these c cytochromes are negatively charged and the E(m) for all is close to 150 mV. Only one of these c cytochromes, which exhibits an alpha-band maximum at 551 nm, acts as a direct electron donor to qCu(A)NOR. Further investigation demonstrated that this cytochrome c(551) possesses two lipoyl moieties, which presumably function to anchor it to the membrane. Steady-state kinetic studies reveal that cytochrome c(551) is a noncompetitive inhibitor of NO reduction when menaquinol is used as an electron donor. This finding points to the presence of two different electron donation pathways in qCu(A)NOR. The ability of qCu(A)NOR to accept electrons from both menaquinol and cytochrome c(551) might be related to the regulation of the rate of NO reduction especially as a defense mechanism of B. azotoformans against the toxicity of NO. Growth experiments in batch culture indeed show that B. azotoformans is highly NO tolerant, in contrast to, for example, Paracoccus denitrificans that has a monofunctional cytochrome c-dependent NOR. We propose that the menaquinol pathway, which has a 4-fold greater maximal activity than the pathway via cytochrome c(551), is used for NO detoxification, whereas electron donation via the endogenous cytochrome c involves the cytochrome b(6)f complex serving the bioenergetic needs of the organism.  相似文献   

17.
The cytochromes of membranes of the cydA mutant Escherichia coli GR19N grown on a proline-amino acid medium were examined. Reduced minus oxidized difference spectra (including fourth-order finite difference spectra) showed that cytochromes with absorption maxima at 554-555, 556-557, 560-561.5 and 563.5-564.5 nm were present. In addition, there were two components with absorption maxima at 548.5 and 551.5 nm which made a minor contribution to the alpha-band absorbance. These were not examined further. Two pools within the cytochromes were detected. One pool, which was reduced rapidly by the substrates NADH, formate and succinate, consisted of cytochromes of the cytochrome o complex. These cytochromes had absorption maxima at 555, 557 and 563.5 nm. In addition, the low-potential cytochrome associated with formate dehydrogenase was reduced rapidly by formate, and a component absorbing at 560-561.5 nm was also present in this pool. The second pool of cytochromes was reduced more slowly by substrate, although the rate was accelerated greatly in the presence of the electron mediator phenazine methosulfate. These cytochromes absorbed maximally at about 556.5 nm. A portion of the cytochrome in this pool was reoxidized by fumarate. This cytochrome may be a component of the fumarate reductase pathway, since the membranes showed high NADH-fumarate reductase activity. The respiratory chain inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide appeared to act at two sites. One site of inhibition was between the dehydrogenases and the cytochromes. A second site of inhibition was located in the cytochrome o complex between cytochrome b-564 and oxygen.  相似文献   

18.
In previous work with membranes of Bacillus subtilis, the succinate dehydrogenase complex was isolated by immunoprecipitation of Triton X-100-solubilized membranes. The complex included a polypeptide with an apparent molecular weight of 19,000, probably attributable to apocytochrome. This paper reports the further characterization of this cytochrome and its relation to the respiratory chain of B. subtilis. The cytochrome was identified as cytochrome b, and its difference absorption spectra showed maxima at 426, 529, and 558 nm at room temperature. The oxidized cytochrome had an absorption maximum at 413 nm. The cytochrome was reduced by succinate in the isolated succinate dehydrogenase complex and in Triton X-100-solubilized membranes. In whole membranes cytochromes b, c, and a were reduced by succinate. In membranes from a mutant containing normal cytochromes but lacking succinate dehydrogenase no reduction of cytochrome was seen with succinate. It was concluded that the isolated succinate dehydrogenase-cytochrome b complex is a functional unit in the intact B. subtilis membrane. An accompanying paper describes cytochrome b as a structural unit involved in the membrane binding of succinate dehydrogenase.  相似文献   

19.
When cells of the denitrifying phototrophic bacterium Rhodobacter sphaeroides forma sp. denitrificans were grown anaerobically under illumination in the presence of nitrate, the content of photosynthetic reaction centers per cellular protein was less than that in cells grown photosynthetically without nitrate under the same light intensity. The contents of cytochromes c1 and c2, which work in both photosynthetic and denitrifying electron transport systems, were almost constant, being independent of the presence of nitrate during growth. Consequently, the ratio of cytochromes c1 and c2 to the reaction center was more than three in the photo-denitrifying cells, whereas it was close to one in the photosynthetic cells under light-limiting conditions. In spite of the excess of cytochromes c1 + c2 over the reaction center in the photo-denitrifying cells, all cytochromes c1 + c2 were oxidized by illumination within hundreds of milliseconds in the presence of antimycin. When glycerol was added to increase the viscosity in the periplasm, biphasic oxidation of cytochromes c1 + c2 was apparent in the photo-denitrifying cells with repetitive flashes. The fast phase oxidation, which took place instantaneously (less than 1 ms) after the first and second flashes, showed a similar pattern to the oxidation in the light-limiting photosynthetic cells. The rate of the slow phase oxidation was sensitive to viscosity and was thought to reflect a diffusion-controlled second-order reaction between cytochrome c2 and the reaction center. The biphasic oxidation of cytochromes c1 + c2 suggests that these cytochromes exist in the photo-denitrifying cells as two different pools in relation to the reaction center.  相似文献   

20.
Pseudomonas AM1, Hyphomicrobium X and Pseudomonas MS all contain cytochrome a/a(3) and a b-type cytochrome able to react with CO. Pseudomonas AM1 and Hyphomicrobium X also have a CO-binding cytochrome c. The purified cytochrome c (redox potential 0.26V) of Pseudomonas AM1 was not susceptible to oxidation by molecular oxygen. CO reacted slowly with the reduced form giving a CO difference spectrum with a peak at 412nm and troughs at 420nm and 550nm. Similar results were obtained with the cytochrome c of Hyphomicrobium (aerobically grown or anaerobically grown with nitrate) and with that of Pseudomonas extorquens. The results given in the present paper are incompatible with an oxygenase or oxidase function for the soluble cytochrome c of methylotrophs. Studies with whole cells of Pseudomonas AM1 and a cytochrome c-deficient mutant have demonstrated that cytochrome b (redox potential 0.009V) is the first cytochrome in the electron-transport chain for oxidation of all substrates except methanol (and ethanol) whose oxidation does not involve this cytochrome. All substrates are usually oxidized by way of cytochrome c and cytochrome oxidase (cytochrome a/a(3)), but there is an alternative route for the reduction of cytochrome a/a(3) in the mutant lacking cytochrome c. Results of experiments on cyanide inhibition of respiration and cytochrome oxidation support the suggestion that the susceptibility of cytochrome b to oxidation by molecular oxygen (reflected in its ability to react with CO) is probably irrelevant to the normal physiology of Pseudomonas AM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号