首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The hypothalamic-pituitary-adrenal/interrenal axis couples serotonergic activity in the brain to the peripheral regulators of energy balance and response to stress. The regulation of peripheral systems occurs largely through the release of peptide hormones, especially the melanocortins (adrenocorticotropic hormone [ACTH] and alpha melanocyte stimulating hormone [α-MSH]), and beta-endorphin. Once in circulation, these peptides regulate a wide range of processes; α-MSH in particular regulates behaviors and physiologies with sexual and social functions. We investigated the role of the HPI and melanocortin peptides in regulation of electric social signals in the gymnotiform electric fish, Brachyhypopomus pinnicaudatus. We found that corticotropin releasing factor, thyrotropin-releasing hormone, and α-MSH, three peptide hormones of the HPI/HPA, increased electric signal waveform amplitude and duration when injected into free-swimming fish. A fourth peptide, a synthetic cyclic-α-MSH analog attenuated the normal circadian and socially-induced EOD enhancements in vivo. When applied to the electrogenic cells (electrocytes) in vitro, only α-MSH increased the amplitude and duration of the electrocyte discharge similar to the waveform enhancements seen in vivo. The cyclic-α-MSH analog had no effect on its own, but blocked or attenuated α-MSH-induced enhancements in the single-cell discharge parameters, demonstrating that this compound functions as a silent antagonist at the electrocyte. Overall, these results strongly suggest that the HPI regulates the EOD communication signal, and demonstrate that circulating melanocortin peptides enhance the electrocyte discharge waveform.  相似文献   

4.
Phosphate metabolism in the electric organ   总被引:2,自引:0,他引:2  
  相似文献   

5.
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ. Accepted: 1 March 1997  相似文献   

6.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

7.
Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1–100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a “Mexican hat” in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1–100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features such as distance, size, and impedance.  相似文献   

8.
Weakly electric fish produce electric signals with a specialised organ in their tail. In addition, they are electrosensitive and can perceive their self-generated signals (for electrolocation) and electric signals of other electric fishes (for electrocommunication). Mormyrids possess three types of peripheral electroreceptor organs, one used for electrocommunication and two types involved in electolocation. They are innervated by afferent fibres, which project to different zones in the electrosensory lateral line lobe (ELL) in the medulla. Brain circuits for electrolocation and electrocommunication are separated almost throughout the whole brain. Electrolocation pathways run from the ELL-cortex to the torus semicircularis of the midbrain and then via the valvula cerebelli towards the telencephalon. Pathways involved in electrocommunication run from the nucleus of the ELL to another part of the torus and from there through the isthmic granule nucleus to the valvula. In addition, a pathway via the preglomerular complex to the telencephalon might exist. In both the electrolocation and the electrocommunication circuits, prominent recurrent pathways are present.  相似文献   

9.
Summary Plasticity in the frequency of the electric organ discharge (EOD) and electroreceptor tuning of weakly electric fish was studied in the genusApteronotus. Both hormone-induced and maturational changes in EOD frequency and electroreceptor tuning were examined.Apteronotus is different from all other steroid-responsive weakly electric fish in that estradiol-17, rather than androgens, induces discharge frequency decreases. This result can account for the reversed discharge frequency dimorphism found inApteronotus in which, counter to all other known sexually dimorphic electric fish, females have lower discharge frequencies than males. Studies of electroreceptor tuning inApteronotus indicate that electroreceptors are closely tuned to the frequency of the EOD. This finding was noted not only in adult animals, but also in juvenile animals shortly after the onset of their EODs. Tuning plasticity inApteronotus, as in other species studied, is associated with altered EOD frequencies and was noted in both maturational EOD changes and in estrogen-induced changes. Thus, tuning plasticity appears to be a general phenomenon which occurs concurrent with a variety of EOD changes.  相似文献   

10.
11.
12.
Weakly electric gymnotiform fish specialize in the regulation and modulation of the action potentials that make up their multi-purpose electric signals. To produce communication signals, gymnotiform fish modulate the waveforms of their electric organ discharges (EODs) over timescales spanning ten orders of magnitude within the animal’s life cycle: developmental, reproductive, circadian, and behavioral. Rapid changes lasting milliseconds to seconds are the result of direct neural control of action potential firing in the electric organ. Intermediate-term changes taking minutes to hours result from the action of melanocortin peptides, the pituitary hormones that induce skin darkening and cortisol release in many vertebrates. Long-term changes in the EOD waveform taking days to weeks result from the action of sex steroids on the electrocytes in the electric organ as well as changes in the neural control structures in the brain. These long-term changes in the electric organ seem to be associated with changes in the expression of voltage-gated ion channels in two gene families. Electric organs express multiple voltage-gated sodium channel genes, at least one of which seems to be regulated by androgens. Electric organs also express multiple subunits of the shaker (Kv1) family of voltage-gated potassium channels. Expression of the Kv1 subtype has been found to vary with the duration of the waveform in the electric signal. Our increasing understanding of the mechanisms underlying precise control of electric communication signals may yield significant insights into the diversity of natural mechanisms available for modifying the performance of ion channels in excitable membranes. These mechanisms may lead to better understanding of normal function in a wide range of physiological systems and future application in treatment of disease states involving pathology of excitable membranes.  相似文献   

13.
The novelty response of weakly electric mormyrids is a transient acceleration of the rate of electric organ discharges (EOD) elicited by a change in stimulus input. In this study, we used it as a tool to test whether Gnathonemus petersii can perceive minute waveform distortions of its EOD that are caused by capacitive objects, as would occur during electrolocation. Four predictions of a hypothesis concerning the mechanism of capacitance detection were tested and confirmed: (1) G. petersii exhibited a strong novelty response to computer-generated (synthetic) electric stimuli that mimic both the waveform and frequency shifts of the EOD caused by natural capacitive objects (Fig. 3). (2) Similar responses were elicited by synthetic stimuli in which only the waveform distortion due to phase shifting the EOD frequency components was present (Fig. 4). (3) Novelty responses could reliably be evoked by a constant amplitude phase shifted EOD that effects the entire body of the fish evenly, i.e., a phase difference across the body surface was lacking (Figs. 3, 4). (4) Local presentation of a phase-shifted EOD mimic that stimulated only a small number of electroreceptor organs at a single location was also effective in eliciting a behavioral response (Fig. 5).Our results indicate that waveform distortions due to phase shifts alone, i.e. independent of amplitude or frequency cues, are sufficient for the detection of capacitive, animate objects. Mormyrids perceive even minute waveform changes of their own EODs by centrally comparing the input of the two types of receptor cells within a single mormyromast electroreceptor organ. Thus, no comparison of differentially affected body regions is necessary. This shows that G. petersii indeed uses a unique mechanism for signal analysis, which is different from the one employed by gymnotiform wavefish.Abbreviations EOD electric organ discharge - p-p-amplitude peak-to-peak amplitude  相似文献   

14.
15.
16.
17.
18.
Summary A classical conditioning paradigm was used to test the ability of Sternopygus macrurus to detect EOD-like stimuli (sine waves) of different frequencies. The behavioral tuning curves were quite close in shape to tuning curves based on single-unit recordings of T units, although the sensitivity at all frequencies was much greater. The behavioral curves showed notches of greatly reduced sensitivity when the test frequency was equal to, or twice the EOD frequency. The EOD of each of the fish was eliminated by lesioning the medullary pacemaker nucleus, and the fish were retested. The resulting tuning curves were nearly the same in shape as those of the EOD-intact individuals, but the PMN-lesioned fish showed an overall reduction of sensitivity of 30 dB. The EOD appears to enhance sensitivity by placing the summed stimulus (test stimulus + fish's EOD) at an amplitude where T units are maximally sensitive to small temporal modulations in the fish's own EOD. Peripheral tuning appears to limit the ability of males to detect the EOD of females, since these are, on average, an octave higher in frequency than the male EOD, while the peak sensitivity of the male occurs 5–10 Hz above its own EOD frequency.Abbreviations EOD electric organ discharge - PMN pacemaker nucleus - BF best frequency - DF difference frequency  相似文献   

19.
P. Ormos  L. Reinisch  L. Keszthelyi 《BBA》1983,722(3):471-479
The time behavior of flash-induced charge movements during the first steps in the bacteriorhodopsin photocycle was measured on a suspension of purple membranes oriented by an electric field. The experiments were done in the temperature range 80–278 K. During the formation of the intermediate K, two negative (with respect to the direction of the proton pump) components of the response signal are well resolved with time constants τ1 < 3 μs and τ2 ? 150 μs at 200 K. The distances of the charge displacements responsible for the electric signals are estimated. On the basis of the results the two components are assigned to two steps in the trans-cis isomerization of the retinal. A third negative component appears at higher temperatures which is related by time constant measurements to the K → L transition.  相似文献   

20.
There is a sexual dimorphism in the frequency of the quasi-sinusoidal electric organ discharge (EOD) of Sternopygus macrurus, with males, on average, an octave lower. EODs are detected by tuberous electroreceptor organs, which exhibit V-shaped frequency tuning with maximal sensitivity near the fish's own EOD frequency. This would seem to limit the ability of a fish to detect the EODs of opposite-sex conspecifics. However, electroreceptor tuning has always been based on single-frequency stimulation, while actual EOD detection involves the addition of a conspecific EOD to the fish's own. In the present study, recordings were made from single electroreceptive units while the fish were stimulated with pairs of sine waves: one (S1) representing the fish's own EOD added to a second (S2) representing a conspecific EOD. T unit response was easily predicted by assuming that the electroreceptor acts as a linear filter in series with a threshold-sensitive spike initiator. P unit response was more complex, and unexpectedly high sensitivity was found for frequencies of S2 well displaced from the fish's EOD frequency. For both P and T units, detection thresholds for S2 were much lower when added to S1, than when presented alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号