首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The urokinase-type plasminogen activator receptor (uPAR) is involved in several biological processes, including proteolysis, adhesion, migration and inflammation. Increased expression of uPAR is associated with metastasis in several tumor types. We studied the biological role of uPAR in melanoma and found that inhibition of uPAR via RNA interference induced massive death in three different metastatic cell lines. Annexin-V staining and caspase activation analysis revealed induction of the mitochondrial apoptotic pathway. The expression of members of the Bcl-2 family (Bax, Bcl-2, Bak and Bcl-x(L)) was changed in a pro-apoptotic manner. uPAR inhibition induced the expression of the tumor suppressor p53 and of its downstream target gene p21. Inhibition of p53 rescued cells from apoptosis indicating that p53 was critical for apoptosis induction. Apoptosis was observed in melanoma cells carrying activating BRAF mutations and occurred in the presence of extracellular signal-regulated kinase (ERK) phosphorylation. uPAR can activate focal adhesion kinase (FAK), which is implicated in adhesion-dependent tumor cell survival. However, inhibition of FAK did not induce apoptosis. Our data suggest a new function of uPAR acting as a survival factor for melanoma by downregulating p53. Inhibition of uPAR induces a pro-apoptotic signalling pathway via p53 that is independent of ERK or FAK signalling. These findings may offer new treatment strategies for metastatic melanoma.  相似文献   

2.
In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients.  相似文献   

3.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

4.
Single-chain urokinase-type plasminogen activator (scu-PA) may be obtained from conditioned cell culture media (natural scu-PA) or by expression of the cDNA encoding human scu-PA in Escherichia coli (recombinant scu-PA). The activation of Glu-plasminogen by natural and recombinant scu-PA can be described by a sequence of three reactions, each of which obeys Michaelis-Menten kinetics. Initial activation of plasminogen to plasmin by scu-PA (reaction I) occurs with a high affinity (Km below 0.8 microM) for both scu-PAs, while the catalytic rate constant (k2) is 0.017 s-1 for recombinant scu-PA but only 0.0009 s-1 for natural scu-PA. Subsequent conversion of scu-PA to urokinase (two-chain urokinase-type plasminogen activator, tcu-PA) by generated plasmin (reaction II) occurs with a comparable affinity (Km about 5 microM) for natural and recombinant scu-PA and with a k2 of 0.23 s-1 for natural and 1.2 s-1 for recombinant scu-PA. Finally, activation of plasminogen by tcu-PA (reaction III) occurs with low affinity (Km 30-50 microM) but with a high catalytic rate constant (k2 about 5 s-1) for both natural and recombinant tcu-PA. The differences in the kinetic parameters of the activation of plasminogen by natural or recombinant scu-PA are thus mainly due to differences in turnover rate in the first reaction. Indeed, the catalytic rate constant of the first reaction is about 20-times higher for recombinant scu-PA than for natural scu-PA. Thus, surprisingly, the artificial, unglycosylated recombinant scu-PA molecule has a better catalytic efficiency than its natural glycosylated counterpart.  相似文献   

5.
6.
The binding of urokinase-type plasminogen activators (u-PA) to receptors on various cell types has been proposed to be an important feature of many cellular processes requiring extracellular proteolysis. We have investigated the effect of single-chain u-PA binding to the monocyte-like cell line U937 on plasminogen activation. A 16-fold acceleration of the activation of plasminogen was observed at optimal concentrations of single-chain u-PA. This potentiation was abolished by the addition of either 6-aminohexanoic acid or the amino-terminal fragment of u-PA, thus demonstrating the requirement for specific binding of both single-chain u-PA and plasminogen to the cells. The mechanism of the enhancement of plasmin generation appears to be due primarily to an increase in the rate of feedback activation of single-chain u-PA to the more active two-chain u-PA by cell-bound plasmin, initially generated by single-chain u-PA. This increased activity of the plasminogen activation system in the presence of U937 cells provides a mechanism whereby u-PAs may exert their influence in a variety of cell-associated proteolytic events.  相似文献   

7.
《Cell differentiation》1988,22(2):115-123
Retina cognin, a cell membrane glycoprotein which mediates cell-cell recognition and adhesion in vitro, is initially present throughout the retina and becomes confined to the ganglion cell layer at 14–15 days of embryogenesis. Within this layer it is found on membranes of virtually all ganglion and displaced amacrine cells, but not on membranes of retinal glial cells (Müller fibers) which traverse this layer. The distribution of cognin as determined by immunocytochemistry is described and compared with that of choline acetyltransferase. The significance of cognin as a possible address marker during development of neural retina is discussed.  相似文献   

8.
Urokinase plasminogen activator (uPA) system, comprising of uPA, its receptor uPAR and inhibitor, type 1 plasminogen activator inhibitor (PAI-1), plays a vital role in various biological processes involving extracellular proteolysis, fibrinolysis, cell migration and proliferation. The timely occurence of these processes are essential for normal wound healing. This study examines the regulation of uPA and PAI-1 by a natural polyphenol-rich compound, grape seed extract (GSE). GSE is reported to have beneficial effects in promoting wound healing. Fibroblast cells exposed to different doses of GSE for 18 hours were processed for further studies such as ELISA, RT-PCR, western blotting, fibrinolytic assay, cell surface plasmin activity assay and in vitro wound healing assay. GSE treatment caused a significant downregulation of uPA and PAI-1 expression, both at the RNA and protein levels. ELISA also revealed a dose-dependent decrease in uPA and PAI-1 activities. Functional significance of the downregulation was evident in decreased fibrinolytic activity, concomittant with decreased cell-surface plasmin activity. In vitro wound healing studies showed that GSE also retarded the migration of cells towards the wounded region.  相似文献   

9.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

10.
11.
We have previously developed TNF prodrugs comprised of a N-terminal scFv targeting, a TNF effector and a C-terminal TNFR1-derived inhibitor module linked to TNF via a MMP-2 motif containing peptide, allowing activation by MMP-2-expressing tumor cells. To overcome the known heterogeneity of matrix metalloprotease expression, we developed TNF prodrugs that become processed by other tumor and/or stroma-associated proteases. These TNF prodrugs comprise either an uPA-selective or a dual uPA-MMP-2-specific linker which displayed efficient, target-dependent and cleavage sequence-specific activation by the corresponding tumor cell-expressed proteases. Selective pharmacologic inhibition of endogenous uPA and MMP-2 confirm independent prodrug processing by these two model proteases and indicate the functional superiority of a prodrug containing a multi-specific protease linker. Processing optimised TNF prodrugs should increase the proportion of active therapeutic within the targeted tissue and thus potentially enhance tumor response rate.Authors Jeannette Gerspach and Julia Németh have contributed equally to this work  相似文献   

12.
A urokinase-type plasminogen activator was purified from conditioned media of several human cell cultures, but preferably from the human lung adenocarcinoma line CALU-3 (ATCC, HTB-55), using a combination of chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, and Sephadex G-100. Final yields of 65-100 micrograms/liter of starting material were obtained with a 290-fold purification factor and a recovery of 30%. The purified plasminogen activator consists of a single polypeptide chain with Mr 54,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is very similar or identical to single-chain urokinase-type plasminogen activator on the basis of immunodiffusion, amino acid composition, and the lack of specific binding to fibrin. It has very low amidolytic activity on Pyroglu-Gly-Arg-rho-nitroanilide and is converted to two-chain urokinase by limited exposure to plasmin. It has a specific activity of 60,000 IU/mg on fibrin plates and directly activates plasminogen following Michaelis-Menten kinetics with Km = 1.1 microM and kappa cat = 0.0026 S-1. It is concluded that the plasminogen activator purified from CALU-3-conditioned media is physically and kinetically identical to single-chain urokinase-type plasminogen activator. With the present straightforward purification method and a readily available source, sufficient amounts of single-chain urokinase-type plasminogen activator can be obtained for more detailed investigations of its biochemical, biological, and thrombolytic properties.  相似文献   

13.
Immunocytochemistry, using rabbit antibodies to a urokinase-type 48- Kdalton Mr mouse plasminogen activator, showed that enzyme immunoreactivity is widely distributed in the normal mouse. Strong staining was obtained in widely disseminated connective tissue cells with a fibroblast-like morphology. Such cells occurred in high numbers in the lamina propria mucosae of the gastrointestinal tract, and in moderate numbers in the connective tissue septa of the pancreas. A few such cells were detected around the larynx, trachea, and bronchi. Immunoreactivity also occurred in epithelial cells of the proximal and distal kidney tubules, the ductus deferens, and in pulmonary pneumocytes. In addition, presumably extracellular staining was seen irregularly along the basement membrane and fibrillar structures in the lamina propria of the small and large intestines. Moreover, decidual cells of the mouse placenta stained strongly, and a moderate staining was observed in epithelial cells of involuting mammary glands, but not in those of noninvoluting glands. No immunoreactivity was observed in endothelial cells. Control experiments included absorption of the antibodies against highly-purified mouse plasminogen activator and the corresponding proenzyme, and the finding of a good correspondence between the number of immunoreactive cells and measurable enzymatic activity determined in adjacent tissue sections. Separation by SDS PAGE followed by immunoblotting revealed only one immunochemically stainable protein band with Mr approximately 48 Kdaltons in extracts from tissues showing immunoreactivity.  相似文献   

14.
15.
Proenzyme to urokinase-type plasminogen activator in the mouse in vivo   总被引:7,自引:0,他引:7  
We have investigated whether urokinase-type plasminogen activator (u-PA) is present in the mouse in vivo as the proenzyme or as the active enzyme. u-PA in extracts of various murine tissues was of a one-polypeptide chain form with an electrophoretic mobility indistinguishable from purified proenzyme (pro-u-PA), as demonstrated by SDS-polyacrylamide gel electrophoresis under reducing conditions followed by immunoblotting. No 2-chain u-PA was detected in any of the extracts (detection limit 10% of that of one-chain u-PA). In bladder urine more than half of the u-PA was of the one-chain form. Together with previous immunocytochemical studies of the normal murine tissues and studies of the Lewis lung carcinoma, the present results indicate that in these tissues the one-chain proenzyme is the predominant form of u-PA in intracellular stores and for the first time demonstrates that at least in some cases the one-chain form constitutes a sizeable fraction of the u-AP in extracellular fluids in the intact organism.  相似文献   

16.
The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal part of the intact receptor, probably including the whole sequence 1-87, and contained N-linked carbohydrate. After detergent phase separation in the Triton X-114 system, the fragment was present in the water phase where its binding activity could be demonstrated in the absence of the rest of the protein. An analysis of internal homology in the amino acid sequence of u-PAR revealed the presence of three repeats of approximately 90 residues each. The ligand-binding fragment corresponds to the first repeat, supporting that this unit is a structurally autonomous domain. Domains homologous with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential applications in interfering with cell-surface plasmin-mediated proteolysis.  相似文献   

17.
Here, we examined the role of ADAM10 during retinal cell differentiation in retinal sections and in vitro cultures of developing chick retinal cells from embryonic day 6 (ED6). Immunohistochemistry showed that ADAM10 is abundantly expressed in the inner zone of neuroblastic layer at ED5, and it becomes more highly expressed in the ganglion cell layer at ED7 and ED9. Western blotting confirmed that ADAM10 was expressed as an inactive pro‐form that was processed to a shorter, active form in control cultured cells, but in cultures treated with an ADAM10 inhibitor (GI254023X) and ADAM10‐specific siRNA, the level of mature ADAM10 decreased. Phase‐contrast microscopy showed that long neurite extensions were present in untreated cultures 24 h after plating, whereas cultures treated with GI254023X showed significant decreases in neurite extension. Immunofluorescence staining revealed that there were far fewer differentiated ganglion cells in ADAM10 siRNA and GI254023X‐treated cultures compared to controls, whereas the photoreceptor cells were unaltered. The Pax6 protein was more strongly detected in the differentiated ganglion cells of control cultures compared to ADAM10 siRNA and GI254023X‐treated cultures. N‐cadherin ectodomain shedding was apparent in control cultures after 24 h, when ganglion cell differentiation was observed, but ADAM10 siRNA and GI254023X treatment inhibited these processes. In contrast, N‐cadherin staining was strongly detected in photoreceptor cells regardless of ADAM10 siRNA and GI254023X treatment. Taken together, these data indicate that the inhibition of ADAM10 can inhibit Pax6 expression and N‐cadherin ectodomain shedding in retinal cells, possibly affecting neurite outgrowth and ganglion cell differentiation. J. Cell. Biochem. 114: 942–954, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The amino-terminal fragment (ATF, Ser1-Glu143) of urokinase-type plasminogen activator (uPA) is responsible for some important functions of uPA, such as receptor binding and chemotactic activity. To dissect the function and structure-activity relationship of ATF, recombinant human ATF was expressed in Pichia pastoris system at a yield of about 30 mg/L. The recombinant ATF was captured by a cation exchange column, further purified up to 99% purity by a gel filtration column, and characterized in terms of its receptor binding capability. The purified ATF was then crystallized by the method of sitting-drop vapor diffusion with magnesium sulfate as the precipitating agent at 298 K. The crystals belong to space group P1 with unit cell dimensions of a=47.5A, b=64.7A, c=65.4A, alpha=71.6 degrees , beta=92.1 degrees , gamma=84.0 degrees .  相似文献   

19.
The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid anchored multidomain member of the Ly-6/uPAR protein domain superfamily. Studies by site-directed photoaffinity labeling, chemical cross-linking, and ligand-induced protection against chemical modification have highlighted the possible involvement of uPAR domain I and particularly loop 3 thereof in ligand binding (Ploug, M. (1998) Biochemistry 37, 16494-16505). Guided by these results we have now performed an alanine scanning analysis of this region in uPAR by site-directed mutagenesis and subsequently measured the effects thereof on the kinetics of uPA binding in real-time by surface plasmon resonance. Only four positions in loop 3 of uPAR domain I exhibited significant changes in the contribution to the free energy of uPA binding (DeltaDeltaG >/= 1.3 kcal mol(-1)) upon single-site substitutions to alanine (i.e. Arg(53), Leu(55), Tyr(57), and Leu(66)). The energetic impact of these four alanine substitutions was not caused by gross structural perturbations, since all monoclonal antibodies tested having conformation-dependent epitopes on this domain exhibited unaltered binding kinetics. These sites together with a three-dimensional structure for uPAR may provide an appropriate target for rational drug design aimed at developing new receptor binding antagonists with potential application in cancer therapy.  相似文献   

20.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号