首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anticancer activity of cisplatin derives from its ability to bind and cross-link DNA, with the major adduct being the 1,2-d(GpG) intrastrand cross-link. Here, the consequences of this adduct on the conformation, thermal stability, and energetics of duplex DNA are assessed, and the modulation of these parameters by the sequence context of the adduct is evaluated. The properties of a family of 15-mer DNA duplexes containing a single 1,2-d(GpG) cis-?Pt(NH(3))(2)?(2+) intrastrand cross-link are probed in different sequence contexts where the flanking base-pairs are systematically varied from T.A to C.G to A.T. By using a combination of spectroscopic and calorimetric techniques, the structural, thermal, and thermodynamic properties of each duplex, both with and without the cross-link, are characterized. Circular dichroism spectroscopic data reveal that the cross-link alters the structure of the host duplex in a manner consistent with a shift from a B-like to an A-like conformation. Thermal denaturation data reveal that the cross-link induces substantial thermal and thermodynamic destabilization of the host duplex. Significantly, the magnitudes of these cross-link-induced effects on duplex structure, thermal stability, and energetics are influenced by the bases that flank the adduct. The presence of flanking A.T base-pairs, relative to T.A or C.G base-pairs, enhances the extent of cross-link-induced alteration to an A-like conformation and dampens the extent of cross-link-induced duplex destabilization. These results are discussed in terms of available structural data, and in terms of the selective recognition of cisplatin-DNA adducts by HMG-domain proteins.  相似文献   

2.
Ding S  Shapiro R  Geacintov NE  Broyde S 《Biochemistry》2005,44(44):14565-14576
The drug Premarin is the most widely used formula for hormone replacement therapy. However, long-term exposure to estrogens from the Premarin drug increases the risk of breast cancer. Equilin and equilenin, major components of Premarin, are predominantly metabolized to 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dG, dA, and dC to form unusual stable cyclic bulky adducts, with four stereoisomers identified for each base adduct. The 4-OHEN-dC adducts are most predominant. They are mutagenic in vitro and have been found in human tumor tissue. We have carried out molecular modeling and molecular dynamics simulations to investigate structures and thermodynamics of the four 4-OHEN-dC stereoisomeric adducts in DNA duplexes. Our results show that the structure of each stereoisomer adduct in duplex DNA is specifically governed by its unique stereochemistry. The bulky adducts, with an obstructed Watson-Crick edge and an equilenin ring system near perpendicular to the damaged cytosine, are located in the B-DNA major or minor groove, with the modified cytosine in the syn or anti conformation, respectively. The DNA duplex structures are distorted, in terms of Watson-Crick pairing at and near the lesion, stacking interactions, and groove dimensions. Stereochemistry determines the orientation of the equilenin rings with respect to the 5'- to 3'-direction of the modified strand, as well as the positioning of the equilenin moiety's methyl and hydroxyl groups for each stereoisomer. The unusual structures and the stereochemical effects underlie their biological processing as miscoding DNA lesions whose mutagenic properties may contribute to breast cancer.  相似文献   

3.
The binding of the anti-tumor antibiotic anthramycin to a defined linear DNA fragment was investigated using both exonuclease III and lambda exonuclease. We show that most of the guanine residues are reactive toward anthramycin; however, several guanine residues showed preferential reactivity for the drug. Using purified UVRA, UVRB and UVRC proteins we present evidence that these three proteins in concert are able to recognize and produce specific strand cleavage flanking anthramycin-DNA adducts. The cleavage of anthramycin adducts by UVRABC nuclease is specific and results in strand breaks at five or six bases 5' and three or four bases 3'-flanking an adduct. At some guanine residues single incisions were observed only on one side of the adduct. The 5' strand breaks observed often occurred as doublet bands on sequencing gels, indicating plasticity in the site of 5' cleavage whereas the 3' cleavage did not show this effect. When DNA fragments modified with elevated levels of anthramycin were used as substrates the activity of the UVRABC nuclease toward the anthramycin adducts decreased. Possible mechanisms for the recognition and specific cleavage of the helix-stabilizing anthramycin DNA adduct and other helix destabilizing lesions by the UVRABC nuclease are discussed.  相似文献   

4.
S Gopalakrishnan  X Liu  D J Patel 《Biochemistry》1992,31(44):10790-10801
Sterigmatocystin and aflatoxin are potent mutagens that contaminate foodstuffs stored under conditions that permit fungal growth. These food mycotoxins can be metabolically activated to their epoxides, which subsequently form covalent adducts with DNA and can eventually induce tumor development. We have generated the sterigmatocystin-d(A1-A2-T3-G4-C5-A6-T7-T8) covalent adduct (two sterigmatocystins per duplex) by reacting sterigmatocystin-1,2-epoxide with the self-complementary d(A-A-T-G-C-A-T-T) duplex and determined its solution structure by the combined application of two-dimensional NMR experiments and molecular dynamics calculations. The self-complementary duplex retains its 2-fold symmetry following covalent adduct formation of sterigmatocystin at the N7 position of G4 residues on each strand of the duplex. The H8 proton of [ST]G4 exchanges rapidly with water and resonates at 9.58 ppm due to the presence of the positive charge on the guanine ring following adduct formation. We have assigned the exchangeable and nonexchangeable proton resonances of sterigmatocystin and the duplex in the covalent adduct and identified the intermolecular proton-proton NOEs that define the orientation and mode of binding of the mutagen to duplex DNA. The analysis was aided by intermolecular NOEs between the sterigmatocystin protons with both the major groove and minor groove protons of the DNA. The molecular dynamics calculations were aided by 180 intramolecular nucleic acid constraints, 16 intramolecular sterigmatocystin constraints, and 56 intermolecular distance constraints between sterigmatocystin and the nucleic acid protons in the adduct. The sterigmatocystin chromophore intercalates between the [ST]G4.C5 and T3.A6 base pairs and stacks predominantly over the modified guanine ring in the adduct duplex. The overall conformation of the DNA remains right-handed on adduct formation with unwinding of the helix, as well as widening of the minor groove. Parallel NMR studies on the sterigmatocystin-d(A1-A2-A3-G4-C5-T6-T7-T8) covalent adduct (two sterigmatocystins per duplex) provide supportive evidence that the mutagen covalently adducts the N7 position of G4 and its chromophore intercalates to the 5' side of the guanine and stacks over it. The present NMR-molecular dynamics studies that define a detailed structure for the sterigmatocystin-DNA adduct support key structural conclusions proposed previously on the basis of a qualitative analysis of NMR parameters for the adduct formed by the related food mutagen aflatoxin B1 and DNA [Gopalakrishnan, S., Harris, T. M., & Stone, M. P. (1990) Biochemistry 29, 10438-10448].  相似文献   

5.
The detection of 1,N2-propanodeoxyguanosine adducts in the DNA of rodent and human tissues as endogenous lesions has raised important questions regarding the source of their formation and their roles in carcinogenesis. Both in vitro and in vivo studies have generated substantial evidence which supports the involvement of short- and long-chain enals derived from oxidized polyunsaturated fatty acids (PUFAs) in their formation. These studies show that: (1) the cyclic propano adducts are common products from reactions of enals with DNA bases; (2) they are formed specifically from linoleic acid (LA; omega-6) and docosahexaenoic acid (omega-3) under in vitro stimulated lipid peroxidation conditions; (3) the levels of propano adducts are dramatically increased in rat liver DNA upon depletion of glutathione; (4) the adduct levels are increased in the liver DNA of the CCl4-treated rats and the mutant strain of Long Evans rats which are genetically predisposed to increased lipid peroxidation; and (5) adduct levels are significantly higher in older rats than in newborn rats. These studies collectively demonstrate that tissue lipid peroxidation is a main endogenous pathway leading to propano adduction in DNA. The possible contribution from environmental sources, however, cannot be completely excluded. The mutagenicity of enals and the mutations observed in site-specific mutagenesis studies using a model 1,N2-propanodeoxyguanosine adduct suggest that these adducts are potential promutagenic lesions. The increased levels of the propano adducts in the tissue of carcinogen-treated animals also provide suggestive evidence for their roles in carcinogenesis. The involvement of these adducts in tumor promotion is speculated on the basis that oxidative condition in tissues is believed to be associated with this process.  相似文献   

6.
When mitoxantrone is activated by formaldehyde it can form adducts with DNA. These occur preferentially at CpG and CpA sequences and are enhanced 2-3-fold at methylated CpG sequences compared with non-methylated sites. We sought to understand the molecular factors involved in enhanced adduct formation at these methylated sites. This required, first, clarification of factors that contributed to the formation of adducts at CpG sites. For this purpose mass spectrometry of an oligonucleotide duplex (containing a single CpG adduct site) was used to confirm the presence of an additional carbon atom (derived from formaldehyde) on the drug-DNA complex. The effect of 3'-flanking sequences was revealed by electrophoretic analysis of oligonucleotide-drug adducts, and the preferred adduct-forming site was identified as 5'-CGG-3'. Radiolabeled studies of drug-DNA adducts confirmed that the site of attachment involved the exocyclic amino of guanine. Molecular modeling analysis of the relative stability of the intercalated form of mitoxantrone was consistent with observed adduct-forming potential of CG sites with varying flanking sequences. The known preference for adduct formation at methylated CG sites was confirmed by energetics calculations and shown to be due to a shift of equilibrium of the intercalated form of the drug from the major groove (at CG sites) to the minor groove (at methylated CG sites). This increases the relative amount of drug that is located adjacent to the N-2 exocyclic amino of guanine in the minor groove, where covalent linkage is facilitated. These results account for the enhanced covalent binding of mitoxantrone to methylated CG sequences and provide a molecular model of the interactions.  相似文献   

7.
Of the carcinogens to which humans are most frequently exposed, the polycyclic aromatic hydrocarbon benzo[a]pyrene (BP) is one of the most ubiquitous. BP is a byproduct of grilled foods and tobacco and fuel combustion and has long been linked to various human cancers, particularly lung and skin. BP is metabolized to diol epoxides that covalently modify DNA bases to form bulky adducts that block DNA synthesis by replicative or high fidelity DNA polymerases. Here we present the structure of a high fidelity polymerase from a thermostable strain of Bacillus stearothermophilus (Bacillus fragment) bound to the most common BP-derived N2-guanine adduct base-paired with cytosine. The BP adduct adopts a conformation that places the polycyclic BP moiety in the nascent DNA minor groove and is the first structure of a minor groove adduct bound to a polymerase. Orientation of the BP moiety into the nascent DNA minor groove results in extensive disruption to the interactions between the adducted DNA duplex and the polymerase. The disruptions revealed by the structure of Bacillus fragment bound to a BP adduct provide a molecular basis for rationalizing the potent blocking effect on replication exerted by BP adducts.  相似文献   

8.
The non-steroidal anti-estrogen tamoxifen [TAM] has been in clinical use over the last two decades as a potent adjunct chemotherapeutic agent for treatment of breast cancer. It has also been given prophylactically to women with a strong family history of breast cancer. However, tamoxifen treatment has also been associated with increased endometrial cancer, possibly resulting from the reaction of metabolically activated tamoxifen derivatives with cellular DNA. Such DNA adducts can be mutagenic and the activities of isomeric adducts may be conformation-dependent. We therefore investigated the high resolution NMR solution conformation of one covalent adduct (cis-isomer, S-epimer of [TAM]G) formed from the reaction of tamoxifen [TAM] to N(2)-of guanine in the d(C-[TAM]G-C).d(G-C-G) sequence context at the 11-mer oligonucleotide duplex level. Our NMR results establish that the S-cis [TAM]G lesion is accomodated within a widened minor groove without disruption of the Watson-Crick [TAM]G. C and flanking Watson-Crick G.C base-pairs. The helix axis of the bound DNA oligomer is bent by about 30 degrees and is directed away from the minor groove adduct site. The presence of such a bulky [TAM]G adduct with components of the TAM residue on both the 5'- and the 3'-side of the modified base could compromise the fidelity of the minor groove polymerase scanning machinery.  相似文献   

9.
Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.  相似文献   

10.
The effects of base sequence, specifically different pyrimidines flanking a bulky DNA adduct, on translesional synthesis in vitro catalyzed by the Klenow fragment of Escherichia coli Pol I (exo(-)) was investigated. The bulky lesion was derived from the binding of a benzo[a]pyrene diol epoxide isomer [(+)-anti-BPDE] to N(2)-guanine (G*). Four different 43-base long oligonucleotide templates were constructed with G* at a site 19 bases from the 5'-end. All bases were identical, except for the pyrimidines, X or Y, flanking G* (sequence context 5'-.XGY., with X, Y = C and/or T). In all cases, the adduct G* slows primer extension beyond G* more than it slows the insertion of a dNTP opposite G* (A and G were predominantly inserted opposite G, with A > G). Depending on X or Y, full lesion bypass differed by factors of approximately 1.5-5 ( approximately 0.6-3.0% bypass efficiencies). A downstream T flanking G on the 5'-side instead of C favors full lesion bypass, while an upstream C flanking G* is more favorable than a T. Various deletion products resulting from misaligned template-primer intermediates are particularly dominant ( approximately 5.0-6.0% efficiencies) with an upstream flanking C, while a 3'-flanking T lowers the levels of deletion products ( approximately 0.5-2.5% efficiencies). The kinetics of (1) single dNTP insertion opposite G* and (2) extension of the primer beyond G* by a single dNTP, or in the presence of all four dNTPs, with different 3'-terminal primer bases (Z) opposite G* were investigated. Unusually efficient primer extension efficiencies beyond the adduct (approaching approximately 90%) was found with Z = T in the case of sequences with 3'-flanking upstream C rather than T. These effects are traced to misaligned slipped frameshift intermediates arising from the pairing of pairs of downstream template base sequences (up to 4-6 bases from G*) with the 3'-terminal primer base and its 5'-flanking base. The latter depend on the base Y and on the base preferentially inserted opposite the adduct. Thus, downstream template sequences as well as the bases flanking G* influence DNA translesion synthesis.  相似文献   

11.
Hopton SR  Thompson AS 《Biochemistry》2011,50(21):4720-4732
SJG-136 (1) is a sequence-selective DNA-interactive agent that is about to enter phase II clinical trials for the treatment of malignant disease. Previous studies on the pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers, typified by SJG-136 and DSB-120 (2), have shown that these planar ligands react with the exocyclic NH(2) groups of two guanine bases in the base of the minor groove of DNA to form an irreversible interstrand cross-linked sequence-specific adduct. Using high-field NMR, we have characterized and modeled the previously predicted interstrand duplex adduct formed by SJG-136 with the self-complementary 5'-d(CICGATCICG)(2) duplex (4). This first SJG-136 NMR-refined adduct structure has been compared with previous high-field NMR studies of the adducts of the closely related PBD dimer DSB-120 with the same duplex and of the adduct of tomaymycin (3) formed with 5'-d(ATGCAT)(2). Surprisingly, the SJG-136 duplex adduct appears to be more closely related to the tomaymycin adduct than to the DSB-120 adduct with respect of the orientation and depth of insertion of the ligand within the minor groove. The intrastrand duplex adduct formed in the reaction of SJG-136 with the noncomplementary 5'-d(CTCATCAC)·(GTGATGAG) duplex (5) has also been synthesized and modeled. In this duplex adduct, the nature of the cross-link was confirmed, the central guanines were identified as the sites of alkylation, and the stereochemical configuration at C11 at both ends of the SJG-136 molecule was determined to be S. The NMR-refined solution structures produced for the intrastrand adduct confirm the previously proposed structure (which was based solely on mass spectroscopy). Both the inter- and intrastrand SJG-136 duplex adducts form with minimal distortion of the DNA duplex. These observations have an impact on the proposal for the mechanism of action of SJG-136 both in vitro and in vivo, on the repair of its adducts and mechanism of resistance in cells, and, potentially, on the type of pharmacodynamic assay to be used in clinical trials. SGJ-136 is currently in phase II clinical trials with several groups working on both dimeric cross-linking agents and monoalkylating ligands based on the PBD alkylating moiety. This study suggests subtle differences between the DNA binding of SJG-136 and the C2 unsubstituted analogue DSB-120 that are likely to be the origins of the differences in potency. Confirmation of the stereochemical configuration at the C11 position (particularly in the intrastrand adduct) provides confirmation of binding orientation that was previously only speculation in the HPLC MS study. Together, these observations are likely to be of value in the development of third-generation PBD-based cross-linkers and monoalkylating analogues.  相似文献   

12.
Rajesh M  Wang G  Jones R  Tretyakova N 《Biochemistry》2005,44(6):2197-2207
The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene, suggesting that factors other than NNK adduct formation are responsible for mutagenesis at these sites.  相似文献   

13.
DNA adducts generated by carcinogenic chemicals reflects human exposure and DNA adducts are related to tumor formation. Most chemical carcinogens require activation to reactive intermediates that bind to nucleophilic centers in proteins and nucleic acids thereby forming covalent adducts. Also, many of the chemicals considered carcinogenic for humans form covalent DNA adducts. Therefore, such DNA damage is generally considered to be causative and linked to tumor formation. In this article we have summarized the work done for many years on the role of DNA adduct formation as an indicator of their carcinogenicity. We have also addressed the important role for measurement of DNA adducts in studies with potential chemopreventive agents for which it is central to have a marker that can be measured more rapidly than changes in cancer incidence.  相似文献   

14.
Zou Y  Ma H  Minko IG  Shell SM  Yang Z  Qu Y  Xu Y  Geacintov NE  Lloyd RS 《Biochemistry》2004,43(14):4196-4205
The DNA repair protein UvrB plays an indispensable role in the stepwise and sequential damage recognition of nucleotide excision repair in Escherichia coli. Our previous studies suggested that UvrB is responsible for the chemical damage recognition only upon a strand opening mediated by UvrA. Difficulties were encountered in studying the direct interaction of UvrB with adducts due to the presence of UvrA. We report herein that a single point mutation of Y95W in which a tyrosine is replaced by a tryptophan results in an UvrB mutant that is capable of efficiently binding to structure-specific DNA adducts even in the absence of UvrA. This mutant is fully functional in the UvrABC incisions. The dissociation constant for the mutant-DNA adduct interaction was less than 100 nM at physiological temperatures as determined by fluorescence spectroscopy. In contrast, similar substitutions at other residues in the beta-hairpin with tryptophan or phenylalanine do not confer UvrB such binding ability. Homology modeling of the structure of E. coli UvrB shows that the aromatic ring of residue Y95 and only Y95 directly points into the DNA binding cleft. We have also examined UvrB recognition of both "normal" bulky BPDE-DNA and protein-cross-linked DNA (DPC) adducts and the roles of aromatic residues of the beta-hairpin in the recognition of these lesions. A mutation of Y92W resulted in an obvious decrease in the efficiency of UvrABC incisions of normal adducts, while the incision of the DPC adduct is dramatically increased. Our results suggest that Y92 may function differently with these two types of adducts, while the Y95 residue plays an unique role in stabilizing the interaction of UvrB with DNA damage, most likely by a hydrophobic stacking.  相似文献   

15.
16.
17.
Anti-cancer drugs, such as cisplatin and oxaliplatin, covalently bind to adjacent guanine bases in DNA to form intra-strand adducts. Differential recognition of drug–DNA adducts by the protein HMGB1a has been related to the differences in efficacy of these drugs in tumours. Additionally, the bases flanking the adduct (the sequence context) also have a marked effect on HMGB1a binding affinity. We perform atomistic molecular dynamics simulations of DNA with cisplatin and oxaliplatin adducts in four sequence contexts (AGGC, CGGA, TGGA and TGGT) in the absence and presence of HMGB1a. The structure of HMGB1a-bound drug–DNA molecules is independent of sequence and drug identity, confirming that differential recognition cannot be explained by the protein-bound structure. The differences in the static and conformational dynamics of the drug–DNA structures in the absence of the protein explain some but not all trends in differential binding affinity of HMGB1a. Since the minor groove width and helical bend of all drug–DNA molecules in the unbound state are lower than the protein-bound state, HMGB1a must actively deform the DNA during binding. The thermodynamic pathway between the unbound and protein-bound states could be an additional factor in the binding affinity of HMGB1a for drug–DNA adducts in various sequence contexts.  相似文献   

18.
Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.  相似文献   

19.
Alekseyev YO  Romano LJ 《Biochemistry》2002,41(13):4467-4479
The presence of bulky adducts in DNA is known to interfere with DNA replication not only at the site of the lesion but also at positions up to 5 nucleotides past the adduct location. Kinetic studies of primer extension by exonuclease-deficient E. coli DNA polymerase I (Klenow fragment) (KF) when (+)-trans- or (+)-cis-B[a]P-N(2)-dG adducts were positioned in the double-stranded region of the primer-templates showed that both stereoisomers significantly block downstream replication. However the (+)-cis adduct, which causes a stronger inhibition of the nucleotides insertion across from and immediately past the lesion, affected the downstream replication to a much smaller extent than did the (+)-trans adduct, especially when the B[a]P-modified dG was properly paired with a dC. The effects of mismatches across from the adduct and the sequence context surrounding the adduct were also dependent on the stereochemistry of the B[a]P adduct. Thus, the identity of the nucleotide across from the adduct that provided the best downstream replication was different for the (+)-cis and (+)-trans adducts, a factor that might differentially contribute to the mutagenic bypass of these lesions. These findings provide strong direct evidence that the conformations of the (+)-cis and (+)-trans adducts within the active site of KF are significantly different and probably differentially affect the interactions of the polymerase with the minor groove, thereby leading to different replication trends. The stereochemistry of the adduct was also found to differentially affect the sequence-mediated primer-template misalignments, resulting in different consequences during the bypass of the lesion.  相似文献   

20.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号