首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Acylation of cellular proteins with endogenously synthesized fatty acids   总被引:14,自引:0,他引:14  
D Towler  L Glaser 《Biochemistry》1986,25(4):878-884
A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [3H]acetate, a general precursor of all fatty acids, using BC3H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [3H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of allostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side‐chains and then to compute the ligand‐induced population shift. Finally, we obtain the free‐energy landscape of the protein in equilibrium, characterizing the free‐energy minima accessed by the protein complexes. We have chosen human tryptophanyl‐tRNA synthetase (hTrpRS), a protein responsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Although fatty acids enhance preadipocyte differentiation in the presence of adequate hormone cocktails, little is known regarding their effects in the absence of these hormones. We have now shown that palmitate, a common long-chain saturated fatty acid, induced apoptosis in both mouse 3T3-L1 and rat primary preadipocytes grown in a normal serum-containing medium. Treatment of preadipocytes with palmitate induced multiple endoplasmic reticulum (ER) stress responses, evidenced by increased protein content of CHOP and GRP78 and splicing of XBP-1 mRNA, as well as altered phosphorylation of eIF2alpha and increased phosphorylation of JNK and Erk1/2. Intriguingly, palmitate induced an early activation of Akt but diminished both Akt activation and its protein mass after prolonged incubation (>6 h). In association with these changes, palmitate reduced expression of beta-catenin and its downstream target, c-Myc and cyclin D1, two key prosurvival proteins. Overexpression of constitutively active Akt did not block the apoptotic effect of palmitate. Cotreatment with unsaturated fatty acids (oleate, linoleate) or with LiCl (a glycogen synthase kinase-3beta inhibitor) attenuated the palmitate-induced apoptosis. Subsequent analysis suggested that the unsaturated fatty acids probably counteracted palmitate by reducing, not eliminating, ER stress, whereas LiCl probably improved viability by activating the Wnt signaling pathway. Cotreatment of palmitate with a standard adipogenic hormone cocktail also abolished the apoptotic effect and promoted adipocyte differentiation. Collectively, our results suggest that palmitate causes multiple cellular stresses that may lead to apoptosis in preadipocytes in the absence of adipogenic stimuli, highlighting the importance of exogenous hormones in directing cell fate in response to increased fatty acid influx.  相似文献   

4.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   

5.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins that modulate neurotransmitter and G protein signaling. RGS7 and its binding partners Galpha and Gbeta5 are enriched in brain, but biochemical mechanisms governing RGS7/Galpha/Gbeta5 interactions and membrane association are poorly defined. We report that RGS7 exists as one cytosolic and three biochemically distinct membrane-bound fractions (salt-extractable, detergent-extractable, and detergent-insensitive) in brain. To define factors that determine RGS7 membrane attachment, we examined the biochemical properties of recombinant RGS7 and Gbeta5 synthesized in Spodoptera frugiperda insect cells. We have found that membrane-bound but not cytosolic RGS7 is covalently modified by the fatty acid palmitate. Gbeta5 is not palmitoylated. Both unmodified (cytosolic) and palmitoylated (membrane-derived) forms of RGS7, when complexed with Gbeta5, are equally effective stimulators of Galpha(o) GTPase activity, suggesting that palmitoylation does not prevent RGS7/Galpha(o) interactions. The isolated core RGS domain of RGS7 selectively binds activated Galpha(i/o) in brain extracts and is an effective stimulator of both Galpha(o) and Galpha(i1) GTPase activities in vitro. In contrast, the RGS7/Gbeta5 complex selectively interacts with Galpha(o) only, suggesting that features outside the RGS domain and/or Gbeta5 association dictate RGS7-Galpha interactions. These findings define previously unrecognized biochemical properties of RGS7, including the first demonstration that RGS7 is palmitoylated.  相似文献   

6.
7.
Allosteric proteins demonstrate the phenomenon of a ligand binding to a protein at a regulatory or effector site and thereby changing the chemical affinity of the catalytic site. As such, allostery is extremely important biologically as a regulatory mechanism for molecular concentrations in many cellular processes. One particularly interesting feature of allostery is that often the catalytic and effector sites are separated by a large distance. Structural comparisons of allosteric proteins resolved in both inactive and active states indicate that a variety of structural rearrangement and changes in motions may contribute to general allosteric behavior. In general it is expected that the coupling of catalytic and regulatory sites is responsible for allosteric behavior. We utilize a novel examination of allostery using rigidity analysis of the underlying graph of the protein structures. Our results indicate a general global change in rigidity associated with allosteric transitions where the R state is more rigid than the T state. A set of allosteric proteins with heterotropic interactions is used to test the hypothesis that catalytic and effector sites are structurally coupled. Observation of a rigid path connecting the effector and catalytic sites in 68.75% of the structures points to rigidity as a means by which the distal sites communicate with each other and so contribute to allosteric regulation. Thus structural rigidity is shown to be a fundamental underlying property that promotes cooperativity and non-locality seen in allostery.  相似文献   

8.
New insights into the mechanisms of protein palmitoylation   总被引:11,自引:0,他引:11  
Linder ME  Deschenes RJ 《Biochemistry》2003,42(15):4311-4320
Since its discovery more than 30 years ago, protein palmitoylation has been shown to have a role in protein-membrane interactions, protein trafficking, and enzyme activity. Until recently, however, the molecular machinery that carries out reversible palmitoylation of proteins has been elusive. In fact, both enzymatic and nonenzymatic S-acylation reaction mechanisms have been proposed. Recent reports of protein palmitoyltransferases in Saccharomyces cerevisiae and Drosophila provide the first glimpse of enzymes that carry out protein palmitoylation. Equally important is the mechanism of depalmitoylation. Two major classes of protein palmitoylthioesterases have been described. One family is lysosomal and is involved in protein degradation. The second is cytosolic and removes palmitoyl moieties preferentially from proteins associated with membranes. This review discusses recent advances in the understanding of mechanisms of addition of palmitate to proteins and removal of palmitate from proteins.  相似文献   

9.
The role of liver cytosolic fatty acid binding protein (L-FABP) in fatty acid transport and metabolism is unclear. Female liver contains substantially more L-FABP than male liver. Female liver also has a different fatty acid transport phenotype, including more rapid uptake, efflux and cytoplasmic transport. However, it is not known if the greater levels of L-FABP are responsible for these differences. We therefore determined whether increasing L-FABP using clofibrate causes male liver to acquire a female transport phenotype. The multiple indicator dilution (MID) method was used to estimate the rate constants for influx, efflux and cytoplasmic diffusion of palmitate in isolated perfused rat livers. Clofibrate treatment increased cytosolic concentrations of L-FABP 4.2+/-0.8-fold, the rate of cytoplasmic diffusion of palmitate 4.3+/-1.7-fold, and the steady-state palmitate extraction 1.5+/-0.3-fold (mean+/-S.E.). Influx and efflux constants were both increased (by 44% and 79%, respectively) to levels typical of female livers. These data suggest that clofibrate-induced elevation of cytosolic L-FABP not only stimulates intracellular diffusion but also influx and efflux of fatty acids. Possible mechanisms include reducing fatty acid binding to cytoplasmic membranes, induction of membrane fatty acid carriers, and catalyzing fatty acid exchange between aqueous cytoplasm and the plasma membrane.  相似文献   

10.
P Kuo  M Weinfeld  J Loscalzo 《Biochemistry》1990,29(28):6626-6632
The mechanism by which dietary cis-unsaturated fatty acids lower plasma levels of low-density lipoprotein (LDL) cholesterol is unknown. Since plasma membrane incorporation of dietary cis-unsaturated fatty acids is known to alter the function of plasma membrane associated proteins, perhaps by increasing membrane fluidity, we examined LDL receptor function in Hep G2 hepatocytes that were unmodified, enriched with the cis-unsaturated fatty acids oleate or linoleate, or enriched with the saturated fatty acids stearate or palmitate. Hepatocytes enriched in cis-unsaturated fatty acids exhibited augmented LDL binding, uptake, and degradation in comparison to unmodified cells. In contrast, Hep G2 hepatocytes enriched in saturated fatty acids had decreased LDL binding, uptake, and degradation. Enrichment with oleate or linoleate resulted in a decrease in the calculated fatty acyl mole-weighted melting point of the plasma membrane and an increase in plasma membrane fluidity, as measured by the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the plasma membrane. Conversely, stearate or palmitate enrichment resulted in an increased plasma membrane fatty acyl mole-weighted melting point and decreased plasma membrane fluidity. LDL binding, uptake, and degradation varied with plasma membrane fluidity in a highly correlated manner. Thus, one mechanism by which dietary cis-unsaturated fatty acids lower LDL cholesterol may possibly involve an alteration in membrane lipid composition or membrane fluidity that promotes enhanced LDL receptor function, thereby leading to increased hepatic clearance of LDL.  相似文献   

11.
Modification of small GTPases by lipids is required for their proper subcellular localization and biological activity. Lipids added post-translationally include both farnesyl and geranylgeranyl isoprenoids and the fatty acid palmitate. Thus, specific small molecule inhibitors of these processes cause mislocalization of small GTPases and impair their biological activity. Common biochemical methods of determining the lipid modification status or inhibitor sensitivity of small GTPases, such as in vitro prenylation assays, SDS-PAGE mobility shifts or metabolic labeling, although highly useful in their own right, cannot distinguish differences among specific subpopulations of cells, link lipid modification status with other properties of interest, or provide spatio-temporal information. An alternative method takes advantage of the tight link between small GTPase lipid modification and subcellular localization. The innate localization pattern of the enhanced green fluorescent protein, a common epitope tag frequently used in live cell imaging, is altered by fusion to modified but not unmodified small GTPases. We describe here a technique that takes advantage of these properties to monitor post-translational modifications of these proteins in a rapid, visual manner in live cells.  相似文献   

12.
Intracellular proteins of eukaryotic cells are frequently covalently modified by the addition of long chain fatty acids. These modifications are thought to allow otherwise soluble proteins to associate with membranes by lipid-lipid based hydrophobic interactions. The purpose of this work was to quantify the effect of acyl chain length on hydrophobic interactions between acylated proteins and phospholipid monolayers. The binding of an artificially acylated model protein to electrically neutral phospholipids was studied by surface plasmon resonance, using BIACORE. Kinetic rates for the binding of bovine pancreatic ribonuclease A (RNase A), monoacylated on its N-terminal lysine with fatty acids of 10, 12, 14, 16 or 18 carbon atoms, to phospholipids on hydrophobic sensor chips, were measured. Unlike unmodified ribonuclease, acylated RNase A bound to the phospholipids, and the association level increased with the acyl chain length to reach a maximum for C16. Reproducible kinetics were obtained which did not fit a 1:1 Langmuir model but rather a two-step binding profile.  相似文献   

13.
We compared the intracellular distribution and regulatory role of fatty acid transporter protein (FATP1) and fatty acid translocase (FAT/CD36) on muscle cell fatty acid metabolism. With the use of adenoviruses, FATP1 and FAT genes were delivered to primary cultured human muscle cells. FATP1 and FAT moderately enhanced palmitate and oleate transport evenly at concentrations of 0.05, 0.5, and 1 mM. Long-term (16 h) consumption of palmitate and oleate from the media, and particularly incorporation into triacylglyceride (TAG), was stimulated equivalently by FATP1 and FAT at all fatty acid concentrations tested. In contrast, long-term CO2 production was reduced by FATP1 and FAT at all doses of palmitate and at the lower concentrations of oleate. Neither FATP1 nor FAT markedly altered the production of acid-soluble metabolic intermediates from palmitate or oleate. The intracellular localization of fusion constructs of FATP1 and FAT with enhanced green fluorescent protein (EGFP) was examined. Independently of fatty acid treatment, FATPGFP was observed throughout the cytosol in a reticular pattern and concentrated in the perinuclear region, partly overlapping with the Golgi marker GM-130. FATGFP was found in the extracellular membrane and in cytosolic vesicles not coincident with GM-130. Neither FATP1 nor FAT proteins colocalized with lipid droplets in oleate-treated cells. We conclude that whereas FAT is localized on the extracellular membrane, FATP1 is active in the cytosol and imports fatty acids into myotubes. Overall, both FATP1 and FAT stimulated transport and consumption of palmitate and oleate, which they channeled away from complete oxidation and toward TAG synthesis. palmitate; oleate; fatty acid binding proteins; skeletal muscle  相似文献   

14.
Two classes of fatty acid acylated proteins exist in eukaryotic cells   总被引:35,自引:3,他引:32       下载免费PDF全文
Labelling of cultured cells with [3H]palmitic and [3H]myristic acids demonstrates that each of these fatty acids modifies a substantially different subset of cellular proteins. Hydroxylamine treatment can be used to differentiate sensitive thioester linkages to palmitate from insensitive amide linkages to myristate. Several palmitoylated proteins are surface-oriented glycoproteins while all of the myristylated proteins appear to be internal. Myristate addition is much more tightly coupled to protein synthesis than palmitoylation, which is able to continue at a reduced level even in the prolonged absence of protein synthesis. Acyl proteins patterns were affected both qualitatively and quantitatively by transformation and growth status. The preferential addition of palmitate to the transferrin receptor and myristate to pp60src, and the absence of these modifications from several other proteins is reported. We propose a nomenclature for fatty acyl proteins based on these observations.  相似文献   

15.
The major physiological inhibitors of insulin secretion, norepinephrine, somatostatin, galanin, and prostaglandin E2, act via specific receptors that activate pertussis toxin (PTX)-sensitive G proteins. Four inhibitory mechanisms are known: 1) activation of ATP-sensitive K channels and repolarization of the beta-cell; 2) inhibition of L-type Ca2+ channels; 3) decreased activity of adenylyl cyclase; and 4) inhibition of exocytosis at a "distal" site in stimulus-secretion coupling. We have examined the underlying mechanisms of inhibition at this distal site. In rat pancreatic islets, 2-bromopalmitate, cerulenin, and polyunsaturated fatty acids, all of which suppress protein acyltransferase activity, blocked the distal inhibitory effects of norepinephrine in a concentration-dependent manner. In contrast, control compounds such as palmitate, 16-hydroxypalmitate, and etomoxir, which do not block protein acylation, had no effect. Furthermore, 2-bromopalmitate also blocked the distal inhibitory actions of somatostatin, galanin, and prostaglandin E2. Importantly, neither 2-bromopalmitate nor cerulenin affected the action of norepinephrine to decrease cAMP production. We also examined the effects of norepinephrine, 2-bromopalmitate, and cerulenin on palmitate metabolism. Palmitate oxidation and its incorporation into lipids seemed not to contribute to the effects of 2-bromopalmitate and cerulenin on norepinephrine action. These data suggest that protein acylation mediates the distal inhibitory effect on insulin secretion. We propose that the inhibitors of insulin secretion, acting via PTX-sensitive G proteins, activate a specific protein acyltransferase, causing the acylation of a protein or proteins critical to exocytosis. This particular acylation and subsequent disruption of the essential and precise interactions involved in core complex formation would block exocytosis.  相似文献   

16.
Two proteins in the yeast Saccharomyces cerevisiae that are encoded by the genes RAS1 and RAS2 are structurally and functionally homologous to proteins of the mammalian ras oncogene family. We examined the role of fatty acylation in the maturation of yeast RAS2 protein by creating mutants in the putative palmitate addition site located at the carboxyl terminus of the protein. Two mutations, Cys-318 to an opal termination codon and Cys-319 to Ser-319, were created in vitro and substituted in the chromosome in place of the normal RAS2 allele. These changes resulted in a failure of RAS2 protein to be acylated with palmitate and a failure of RAS2 protein to be localized to a membrane fraction. The mutations yielded a Ras2- phenotype with respect to the ability of the resultant mutants to grow on nonfermentable carbon sources and to complement ras1- mutants. However, overexpression of the ras2Ser-319 product yielded a Ras+ phenotype without a corresponding association of the mutant protein with the membrane fraction. We conclude that the presence of a fatty acyl moiety is important for localizing RAS2 protein to the membrane where it is active but that the fatty acyl group is not an absolute requirement of RAS2 protein function.  相似文献   

17.
We report that the cell surface glycoprotein CD4 expressed in HeLa cells can be metabolically labeled with [3H]palmitic acid. Analysis of the 3H-label after hydrolysis of the protein indicated that it was incorporated predominantly as palmitic acid. Comparison of the amount of [3H]palmitate incorporated into CD4 with that incorporated into a protein known to contain one molecule of esterified palmitate suggested that one to two molecules of palmitate were added to CD4. The fatty acid was readily cleaved from CD4 by treatment with weak base suggesting a thioester linkage. Mutations of each of 2 cysteine residues, Cys394 and Cys397, in CD4 at the junction of the transmembrane and cytoplasmic domains reduced labeling with [3H]palmitic acid, and mutation of both cysteines eliminated labeling. These results indicate that both cysteines are esterified to palmitate. Modification with palmitate was not required for expression of CD4 on the cell surface or for binding of p56lck to its cytoplasmic domain.  相似文献   

18.
Plasma from the Antarctic toothfish, Dissostichus mawsoni, a member of the advanced teleost Nototheniidae family, was analysed. Agarose gel electrophoresis showed a major diffuse anionic protein that bound [14C]palmitic acid but not 63Ni2+, and two more cationic proteins that bound 63Ni2+ but not palmitate. Oil Red O staining following cellulose acetate electrophoresis indicated that the palmitate binding protein was a lipoprotein. Two-dimensional electrophoresis showed that this palmitate binding band was composed of three proteins with M(r) of 11, 30, and 42 kDa, without any trace of material at approximately 65 kDa, the mass of albumin. N-terminal sequencing of the palmitate binding band gave a major sequence of DAAQPSQELR-, indicating a high degree of homology to apolipoprotein A-I (apo-AI), the major apolipoprotein of high density lipoprotein (HDL). N-terminal sequencing of the major nickel binding band produced a sequence with no homology to albumin. When ultracentrifugation was used to isolate the lipoproteins from Antarctic toothfish plasma, the palmitate binding protein was found solely in the lipoprotein fraction. In competitive binding experiments, added human albumin did not prevent palmitate binding to toothfish HDL. In conclusion, there is no evidence for albumin in Antarctic toothfish plasma and HDL assumes the role of fatty acid transport.  相似文献   

19.
The role of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in insulin secretion following chronic exposure to non-esterified fatty acids (NEFAs) has not been extensively investigated. Here, we show that synaptosome-associated protein of 25 kDa (SNAP-25) levels were predominantly elevated in the soluble fraction of mouse islets exposed to palmitate. This coincided with an impairment of insulin secretion to glucose and non-glucose secretagogues, consistent with a defect at a distal regulatory step in exocytosis. Removal of palmitate from the media restored both SNAP-25 protein levels and insulin secretion to control levels. We conclude that increased expression of SNAP-25 is associated with NEFA-induced impairment of insulin secretion in mouse islets.  相似文献   

20.
Summary We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualititative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号