首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Based on the dataset of a broad-leaved Korean pine forest in Jiaohe, Jilin Province, this research compared the influences of species diversity and community structure on productivity. We aim to explain the relationship between diversity and productivity for better forest management. Methods: We used the data of 10 973 woody-plants in a 11.76 hm2 large sample plot and analyzed the correlations between 7 different indices of species diversity or community structure and productivity. Structural equation model was used to compare the effects of species diversity and community structure on productivity. Important findings: The results showed that: (1) Both species diversity and community structure had significant effects on productivity when they were considered separately in linear regression analysis, i.e. species evenness was negatively correlated with productivity, the Shannon index of community structure was positively correlated with productivity and the Gini index was negatively correlated with productivity. (2) In the structural equation model, when simultaneously considered, community structure had stronger influence on productivity than species diversity. Our research suggests that, the effects of community structure on productivity are greater than species diversity and it is important to increase community structure complexity to improve forest productivity during forest management.  相似文献   

2.
《植物生态学报》2017,41(11):1149
Aims Based on the dataset of a broad-leaved Korean pine forest in Jiaohe, Jilin Province, this research compared the influences of species diversity and community structure on productivity. We aim to explain the relationship between diversity and productivity for better forest management. Methods We used the data of 10 973 woody-plants in a 11.76 hm2 large sample plot and analyzed the correlations between 7 different indices of species diversity or community structure and productivity. Structural equation model was used to compare the effects of species diversity and community structure on productivity. Important findings The results showed that: (1) Both species diversity and community structure had significant effects on productivity when they were considered separately in linear regression analysis, i.e. species evenness was negatively correlated with productivity, the Shannon index of community structure was positively correlated with productivity and the Gini index was negatively correlated with productivity. (2) In the structural equation model, when simultaneously considered, community structure had stronger influence on productivity than species diversity. Our research suggests that, the effects of community structure on productivity are greater than species diversity and it is important to increase community structure complexity to improve forest productivity during forest management.  相似文献   

3.
瘿绵蚜科虫瘿的多样性研究   总被引:1,自引:0,他引:1  
是否形成虫瘿及虫瘿的位置、形态等是蚜虫生物学的重要特征.本文在已有标本采集记录和资料的基础上,从形成虫瘿的寄主植物、虫瘿的类型、虫瘿着生的部位和虫瘿的形态结构4方面对瘿绵蚜的虫瘿多样性进行了系统研究.结果表明该科蚜虫的虫瘿在类型上有虫瘿和伪虫瘿之别;在着生部位上,有叶片、侧脉、主脉、叶柄、复叶总轴、嫩枝等不同部位;就虫瘿而言,在形状上有尖椒状、鸡冠状、袋状、球状、黄瓜状、枫叶状和倍花状之分,在结构上有单室和多室两类.同时,基于系统分类及虫瘿多样性研究的结果,初步探讨了瘿绵蚜科虫瘿的演化,为进一步从分子水平深入研究虫瘿演化奠定基础.  相似文献   

4.

Background

Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year.

Methodology/Principal Findings

Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon''s index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation.

Significance

Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly.  相似文献   

5.
Species diversity depends on, often interfering, multiple ecological drivers. Comprehensive approaches are hence needed to understand the mechanisms determining species diversity. In this study, we analysed the impact of vegetation structure, soil properties and fragmentation on the plant species diversity of remnant calcareous grasslands, therefore, in a comparative approach.We determined plant species diversity of 18 calcareous grasslands in south eastern Germany including all species and grassland specialists separately. Furthermore, we analysed the spatial structure of the grasslands as a result of fragmentation during the last 150 years (habitat area, distance to the nearest calcareous grassland and connectivity in 1830 and 2013). We also collected data concerning the vegetation structure (height of the vegetation, cover of bare soil, grass and litter) and the soil properties (content of phosphorous and potassium, ratio of carbon and nitrogen) of the grassland patches. Data were analysed using Bayesian multiple regressions.We observed a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. In the Bayesian multiple regressions the species diversity of the studied grasslands depended negatively on cover of litter and to a lower degree on the distance to the nearest calcareous grassland in 2013, whereas soil properties had no significant impact.Our study supports the observation that vegetation structure, which strongly depends on land use, is often more important for the species richness of calcareous grasslands than fragmentation or soil properties. Even small and isolated grasslands may, therefore, contribute significantly to the conservation of species diversity, when they are still grazed.  相似文献   

6.
Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single-copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (F(ST) = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories.  相似文献   

7.
马尾松林食叶类群昆虫多样性及相互关系   总被引:3,自引:0,他引:3  
广西凭祥地区主要的马尾松食叶害虫有马尾松毛虫Dendrolimus punctatus Walker、松茸毒蛾Dasychira axutha Collenette、松艺夜蛾Hyssia adusta Draudt、松尺蠖Ectropis bistortata Goze、松叶蜂(Diprinid):对马尾松林食叶类群昆虫多样性、组成结构和动态变化规律的研究表明,无灾区各种食叶害虫的多样性较高,比例比较均匀,而常灾区多样性较低.以马尾松毛虫和松毒蛾为主,其它食叶害虫的比例都很小,偶灾区介于二者之间。非暴发期的多样性高可降低害虫的变动幅度。松毒蛾与松毛虫具有协同危害的特性,而其它几种马尾松食叶害虫对松毛虫产生一定的抑制作用:水平相互关系可能降低或增加松毛虫暴发的机会。增加食叶类群的多样性,不但可以通过竞争抑制松毛虫,还有利于增加天敌和整个群落的多样性,是松毛虫持续控制的研究方向。  相似文献   

8.
Rapid within-species evolution can alter community structure, yet the mechanisms underpinning this effect remain unknown. Populations that rapidly evolve large amounts of phenotypic diversity are likely to interact with more species and have the largest impact on community structure. However, the evolution of phenotypic diversity is, in turn, influenced by the presence of other species. Here, we investigate how microbial community structure changes as a consequence of rapidly evolved within-species diversity using Pseudomonas fluorescens as a focal species. Evolved P. fluorescens populations showed substantial phenotypic diversification in resource-use (and correlated genomic change) irrespective of whether they were pre-adapted in isolation or in a community context. Manipulating diversity revealed that more diverse P. fluorescens populations had the greatest impact on community structure, by suppressing some bacterial taxa, but facilitating others. These findings suggest that conditions that promote the evolution of high within-population diversity should result in a larger impact on community structure.Subject terms: Microbial ecology, Community ecology  相似文献   

9.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   

10.
Chaudhuri I  Söding J  Lupas AN 《Proteins》2008,71(2):795-803
beta-Propellers are toroidal folds, in which repeated, four-stranded beta-meanders are arranged in a circular and slightly tilted fashion, like the blades of a propeller. They are found in all domains of life, with a strong preponderance among eukaryotes. Propellers show considerable sequence diversity and are classified into six separate structural groups by the SCOP and CATH databases. Despite this diversity, they often show similarities across groups, not only in structure but also in sequence, raising the possibility of a common origin. In agreement with this hypothesis, most propellers group together in a cluster map of all-beta folds generated by sequence similarity, because of numerous pairwise matches, many of which are individually nonsignificant. In total, 45 of 60 propellers in the SCOP25 database, covering four SCOP folds, are clustered in this group and analysis with sensitive sequence comparison methods shows that they are similar at a level indicative of homology. Two mechanisms appear to contribute to the evolution of beta-propellers: amplification from single blades and subsequent functional differentiation. The observation of propellers with nearly identical blades in genomic sequences show that these mechanisms are still operating today.  相似文献   

11.
The molecular basis for tropomyosin isoform diversity.   总被引:28,自引:0,他引:28  
The tropomyosins are a family of actin filament binding proteins. In multicellular animals, they exhibit extensive cell type specific isoform diversity. In this essay we discuss the genetic mechanisms by which this diversity is generated and its possible significance to cellular function.  相似文献   

12.
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.  相似文献   

13.
Microorganisms are a tremendously large and diverse group spanning multiple kingdoms, yet they have been considerably under-studied by ecologists and evolutionary biologists compared to their larger relatives. Although a few microbial species have become the stars of laboratory experiments, relatively few studies have examined microbial species in their natural habitats. As such, the question of whether microbial diversity parallels that of larger bodied species is contentious (Lachance 2004; Fenchel & Finlay 2004). It has been suggested that large population sizes, high dispersal potential and low extinction rates lead to genetically homogeneous populations of microbial species over large geographical scales—arguments that bring to mind discussions about speciation and population structure in the marine environment. In this issue of Molecular Ecology, Herrera et al. (2011) add to this debate by examining 91 isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain. Their AFLP results support both spatial structuring of genetic diversity across the region, as well as microsite-dependent diversifying selection within single flowers. This study adds to a growing body of literature suggesting that although microbes have much larger population sizes and many differ in their principal mode of reproduction (primarily clonal rather than sexual), patterns of genetic diversity and phylogenetic structure for some microbial species may be similar to that of larger species. This study highlights the need for vastly more research that specifically examines biogeographic structure in this under-utilized group of organisms.  相似文献   

14.
杨顺  孙微  刘杏忠  向梅春 《生物多样性》2016,24(9):1068-125
石生真菌是一类生长在裸露岩石上形成紧凑暗色菌落的特殊生命, 在自然界未发现其有性生殖结构, 它们具有丰富的物种多样性。石生真菌是地球上最具耐受力的一种真核生命, 具有独特的适应性, 并进化出各种适应机制以占据严酷的生态位, 它们在细胞结构、代谢方式、抗逆机制等方面具有特殊性。尽管石生真菌很常见,但由于其体积小、生长缓慢并且缺乏明显的形态特征而常常被人们忽视。本文在介绍石生真菌的多样性、研究方法和研究历史的基础上, 重点介绍石生真菌的逆境耐受性和抗逆机制以及石生真菌的应用研究。以期能引起科学工作者对这类特殊生境里的真菌研究的重视, 更好地理解这类真菌在地球上的重要作用。  相似文献   

15.
Although group I and group II introns were discovered more than 25 years ago, they are still difficult to identify. Modeling their RNA structure also remains particularly challenging for organelle sequences, owing to their great diversity. In fact, accelerated evolution in organelles often results in a reduced RNA structure and a loss of autocatalytic splicing and intron mobility. We set out to identify all mitochondrial group I and II introns in published sequences, and, to this end, we developed and applied a new search approach: RNAweasel. On the basis of the results, we focus here on building a comprehensive picture of mitochondrial group I introns, including a modified (reduced) consensus RNA secondary structure and a concise phylogeny-based subclassification.  相似文献   

16.
The Scandinavian brown bear went through a major decline in population size approximately 100 years ago, due to intense hunting. After being protected, the population subsequently recovered and today numbers in the thousands. The genetic diversity in the contemporary population has been investigated in considerable detail, and it has been shown that the population consists of several subpopulations that display relatively high levels of genetic variation. However, previous studies have been unable to resolve the degree to which the demographic bottleneck impacted the contemporary genetic structure and diversity. In this study, we used mitochondrial and microsatellite DNA markers from pre‐ and postbottleneck Scandinavian brown bear samples to investigate the effect of the bottleneck. Simulation and multivariate analysis suggested the same genetic structure for the historical and modern samples, which are clustered into three subpopulations in southern, central and northern Scandinavia. However, the southern subpopulation appears to have gone through a marked change in allele frequencies. When comparing the mitochondrial DNA diversity in the whole population, we found a major decline in haplotype numbers across the bottleneck. However, the loss of autosomal genetic diversity was less pronounced, although a significant decline in allelic richness was observed in the southern subpopulation. Approximate Bayesian computations provided clear support for a decline in effective population size during the bottleneck, in both the southern and northern subpopulations. These results have implications for the future management of the Scandinavian brown bear because they indicate a recent loss in genetic diversity and also that the current genetic structure may have been caused by historical ecological processes rather than recent anthropogenic persecution.  相似文献   

17.
李杨  刘梅  孙庆业 《生态学报》2016,36(18):5884-5892
分布于铜尾矿废弃地的裸地表面及维管植物群落中的生物土壤结皮在尾矿废弃地生态恢复过程中扮演重要角色。利用分子生物学技术探讨了不同维管植物下以及不同演替阶段的生物土壤结皮中真菌的多样性及其群落结构的变化。结果表明:生物土壤结皮中的真菌主要包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和壶菌门(Chytridiomycota),其中子囊菌门占绝对优势,其相对丰度为55.12%—87.73%,其次为担子菌门相对丰度为12.27%—43.86%;不同样本真菌群落结构在门、纲、目以及属的水平存在显著差异;生物土壤结皮中真菌群落结构和多样性的差异与维管植物群落类型以及演替阶段不同的生物土壤结皮的类型有关,与基质化学性质之间无显著的相关性。  相似文献   

18.
Plant based medicines have gained popularity worldwide due to their almost negligible side effects. In India, the three traditional medicinal systems, namely homeopathy, Ayurveda and Siddha rely heavily on plants for medicinal formulations. To prevent the indiscriminate collection of these valuable medicinal plants and for their proper authentication and conservation, it is imperative to go for sustained efforts towards proper germplasm cataloguing and devising conservation strategies. For this purpose, molecular markers have a significant role, as they provide information ranging from diversity at nucleotide level (single nucleotide polymorphisms) to gene and allele frequencies (genotype information), the extent and distribution of genetic diversity, and population structure. Over the past twenty years, the molecular marker field has completely transformed the meaning of conservation genetics which has emerged from a theory-based field of population biology to a full-fledged pragmatic discipline. In this review, we have explored the transition and transformation of molecular marker technologies throughout these years.  相似文献   

19.
Plant based medicines have gained popularity worldwide due to their almost negligible side effects. In India, the three traditional medicinal systems, namely homeopathy, Ayurveda and Siddha rely heavily on plants for medicinal formulations. To prevent the indiscriminate collection of these valuable medicinal plants and for their proper authentication and conservation, it is imperative to go for sustained efforts towards proper germplasm cataloguing and devising conservation strategies. For this purpose, molecular markers have a significant role, as they provide information ranging from diversity at nucleotide level (single nucleotide polymorphisms) to gene and allele frequencies (genotype information), the extent and distribution of genetic diversity, and population structure. Over the past twenty years, the molecular marker field has completely transformed the meaning of conservation genetics which has emerged from a theory-based field of population biology to a full-fledged pragmatic discipline. In this review, we have explored the transition and transformation of molecular marker technologies throughout these years.  相似文献   

20.
Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75‐m depth. The communities of microbial eukaryotes were clustered into shallow‐, middle‐, and deep‐water groups according to the depth from which they were collected, indicating a depth‐related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50‐m deep, being most abundant near the sea floor where they contributed ca. 64–97% and 40–74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号