首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis.  相似文献   

2.
The cell transformation assays (CTAs) have attracted attention within the field of alternative methods due to their potential to reduce the number of animal experiments in the field of carcinogenicity. The CTA using BALB/c 3T3 cells has proved to be able to respond to chemical carcinogens by inducing morphologically transformed foci. Although a considerable amount of data on the performance of the assay has been collected, a formal evaluation focusing particularly on reproducibility, and a standardised protocol were considered important. Therefore the European Centre for the Validation of Alternative Methods (ECVAM) decided to coordinate a prevalidation study of the BALB/c 3T3 CTA. Three different laboratories from Japan and Europe participated. In the study the following modules were assessed stepwise: test definition (Module 1) consisted of the standardisation of the protocol, the selection of the cell lineage, and the preparation of a photo catalogue on the transformed foci. The within-laboratory reproducibility (Module 2) and the transferability (Module 3) were assessed using non-coded and coded 3-methylcholanthrene. Then, five coded chemicals were tested for the assessment of between-laboratory reproducibility (Module 4). All three laboratories obtained positive results with benzo[a]pyrene, phenanthrene and o-toluidine HCl. 2-Acetylaminofluorene was positive in two laboratories and equivocal in one laboratory. Anthracene was negative in all three laboratories. The chemicals except phenanthrene, which is classified by IARC (http://monographs.iarc.fr) as group 3 "not classifiable as to its carcinogenicity to human", were correctly predicted as carcinogens. Further studies on phenanthrene will clarify this discrepancy. Thus, although only a few chemicals were tested, it can be seen that the predictive capacity of the BALB/c 3T3 CTA is satisfactory. On the basis of the outcome of this study, an improved protocol, incorporating some changes related to data interpretation, has been developed. It is recommended that this protocol be used in the future to provide more data that may confirm the robustness of this protocol and the performance of the assay itself. During the study it became clear that selecting the most appropriate concentrations for the transformation assay is crucial.  相似文献   

3.
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.  相似文献   

4.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is an important in vitro method that is highly predictive of rodent carcinogenicity. It is a key method for reducing animal usage for carcinogenicity prediction. The SHE assay has been used for many years primarily to investigate and identify potential rodent carcinogens thereby reducing the number of 2-year bioassays performed in rodents. As for other assays with a long history of use, the SHE CTA has not undergone formal validation. To address this, the European Centre for the Validation of Alternative Methods (ECVAM) coordinated a prevalidation study. The aim of this study was to evaluate the within-laboratory reproducibility, test method transferability, and between-laboratory reproducibility and to develop a standardised state-of-the-art protocol for the SHE CTA at pH 6.7. Formal ECVAM principles for criteria on reproducibility (including the within-laboratory reproducibility, the transferability and the between-laboratories reproducibility) were applied. In addition to the assessment of reproducibility, this study helped define a standard protocol for use in developing an Organisation for Economic Co-operation and Development (OECD) test guideline for the SHE CTA. Six compounds were evaluated in this study: benzo(a)pyrene, 3-methylcholanthrene, o-toluidine HCl, 2,4-diaminotoluene, phthalic anhydride and anthracene. Results of this study demonstrate that a protocol is available that is transferable between laboratories, and that the SHE CTA at pH 6.7 is reproducible within- and between-laboratories.  相似文献   

5.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline.  相似文献   

6.
7.
The European Centre for the Validation of Alternative Methods (ECVAM) has organised an interlaboratory prevalidation study on the Syrian hamster embryo (SHE) cell transformation assay (CTA) at pH 7.0 for the detection of rodent carcinogens. The SHE CTA at pH 7.0 has been evaluated for its within-laboratory reproducibility, transferability and between-laboratory reproducibility. Four laboratories using the same basic protocol with minor modifications participated in this study and tested a series of six coded-chemicals: four rodent carcinogens (benzo(a)pyrene, 3-methylcholanthrene, 2,4-diaminotoluene and o-toluidine HCl) and two non-carcinogens (anthracene and phthalic anhydride). All the laboratories found the expected results with coded chemicals except for phthalic anhydride which resulted in a different call in only one laboratory. Based on the outcome of this study, it can be concluded that a standardised protocol is available that should be the basis for future use. This protocol and the assay system itself are transferable between laboratories and the SHE CTA at pH 7.0 is reproducible within- and between-laboratories.  相似文献   

8.
A standardized protocol and guidelines for the performance of cell transformation testing in mouse embryo (C3H/10T1/2), mouse fibroblast (BALB/c 3T3) and Syrian hamster embryo (SHE) cells have been developed. The protocol is based primarily on current laboratory practices as determined by responses to a detailed questionnaire completed by North American and European governmental, university and contract laboratories involved with cell transformation experimentation. This report identifies those modifications to previously described methodologies which are being used on a regular basis and also serves to clarify confusing or inconsistent practices.  相似文献   

9.
The present protocol has been developed for the BALB/c 3T3 cell transformation assay (CTA), following the prevalidation study coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and reported in this issue (Tanaka et al. [16]). Based upon the experience gained from this effort and as suggested by the Validation Management Team (VMT), some acceptance and assessment criteria have been refined compared to those used during the prevalidation study. The present protocol thus describes cell culture maintenance, the dose-range finding (DRF) experiment and the transformation assay, including cytotoxicity and morphological transformation evaluation. Use of this protocol and of the associated photo catalogue included in this issue (Sasaki et al. [17]) is recommended for the future conduct of the BALB/c 3T3 CTA.  相似文献   

10.
In vitro cell transformation is a process characterized by a series of progressive distinctive events that often emulate manifestations occurring in vivo and which are associated with neoplasia. Attendant cellular and sub-cellular alterations include, among others: cellular immortality, phenotypic changes, aneuploidy, genetic variability, cellular disarray, anchorage-independent growth, and tumorigenicity in vivo. Early chemically induced neoplastic transformation studies involved the use of normal diploid (Syrian) hamster embryo (SHE) cells and monitored the formation of morphologically altered colonies. Later investigations employed primarily two established mouse cell lines, i.e. the BALB/c 3T3 A31 cell line and the C3H 10T 1/2 cell line, and monitored the induction of morphologically aberrant foci. In either case, such transformed cellular clusters (colonies and foci) could induce tumors upon inoculation in vivo. Some subsequent noteworthy advancements using these systems included pH adjustments, metabolic supplementation, amplification of expression of formerly latent transformed foci, concurrent detection of mutagenesis and transformation, and use of a Bhas 42 cell line (v-Ha-ras transfected BALB/c 3T3 cells) to detect both tumor initiators and promoters. Over time, such transformation assay systems have been found useful in academic, industry and regulatory laboratories, generally for research purposes, but also occasionally as screening tools for potential chemical carcinogens. Nevertheless, to date, use of these assays for decision-making purposes in the regulatory arena remains elusive and will require comprehensive validation to gain universal acceptance.  相似文献   

11.
The genotoxicity of benzo[a]pyrene, cyclophosphamide, 2-aminoanthracene, 2-nitrofluorene, nitrosated coal-dust extracts, and cigarette-smoke condensate were tested with the micronucleus assay using an established mammalian cell line. The results showed that all chemicals and complex mixtures studied induced micronuclei in BALB/c-3T3 cells. These results indicate that BALB/c-3T3 cells are capable of activating certain promutagens and procarcinogens. It seems, therefore, that in addition to cell transformation, the micronucleus assay in BALB/c-3T3 cells without an exogenous activation system may be useful for in vitro studies to detect genotoxic chemicals and complex mixtures.  相似文献   

12.
13.
The nuclear polyhedrosis virus of Autographa californica (AcNPV) was evaluated by using in vitro test systems for toxicity and transforming potential in mammalian cells. Mass cell cultures of CV-1 and WI38 cells appeared unaffected by AcNPV at a multiplicity of infection of 5. Human foreskin cells grew more slowly after inoculation but eventually produced healthy monolayers. The sensitivities of the inhibition of reproductive survivability assays were greater and demonstrated slight AcNPV toxicity to CV-1, WI38, and human foreskin cells. Toxicity was not ameliorated when gradient-purified or psoralen-inactivated virus was used, suggesting that the toxic component of the preparation is part of the virion or copurifies with it. AcNPV was not toxic to and did not transform BALB/c 3T3 cells or primary cell cultures derived from Syrian hamster embryo cells (SHE). Unlike the BALB/c 3T3 transformation assay, the SHE assay detected no spontaneous transformants. The SHE transformation assay can employ simian adenovirus 7 as a positive control. SHE are transformed by numerous viruses and so are useful in assessment protocols. This study suggests that in vitro assessment of viral pesticide toxicity should employ the inhibition of reproductive survivability assay and that transformation assessment is best done with the SHE-simian adenovirus 7 procedure.  相似文献   

14.
The nuclear polyhedrosis virus of Autographa californica (AcNPV) was evaluated by using in vitro test systems for toxicity and transforming potential in mammalian cells. Mass cell cultures of CV-1 and WI38 cells appeared unaffected by AcNPV at a multiplicity of infection of 5. Human foreskin cells grew more slowly after inoculation but eventually produced healthy monolayers. The sensitivities of the inhibition of reproductive survivability assays were greater and demonstrated slight AcNPV toxicity to CV-1, WI38, and human foreskin cells. Toxicity was not ameliorated when gradient-purified or psoralen-inactivated virus was used, suggesting that the toxic component of the preparation is part of the virion or copurifies with it. AcNPV was not toxic to and did not transform BALB/c 3T3 cells or primary cell cultures derived from Syrian hamster embryo cells (SHE). Unlike the BALB/c 3T3 transformation assay, the SHE assay detected no spontaneous transformants. The SHE transformation assay can employ simian adenovirus 7 as a positive control. SHE are transformed by numerous viruses and so are useful in assessment protocols. This study suggests that in vitro assessment of viral pesticide toxicity should employ the inhibition of reproductive survivability assay and that transformation assessment is best done with the SHE-simian adenovirus 7 procedure.  相似文献   

15.

Background

Based on their tumor-associated expression pattern, cancer/testis antigens (CTAs) are considered potential targets for cancer immunotherapy. We aim to evaluate the expression of CTAs in non-Hodgkin??s lymphoma (NHL) samples and the ability of these patients to elicit spontaneous humoral immune response against CTAs.

Methods

Expression of MAGE-A family, CT7/MAGE-C1, CT10/MAGE-C2, GAGE and NY-ESO-1 was analyzed by immunohistochemistry in a tissue microarray generated from 106 NHL archival cases. The humoral response against 19 CTAs was tested in 97 untreated NHL serum samples using ELISA technique.

Results

11.3?% of NHL tumor samples expressed at least 1 CTA. MAGE-A family (6.6?%), GAGE (5.7?%) and NY-ESO-1(4.7?%) were the most frequently expressed antigens. We found no statistically significant correlation between CTA positivity and clinical parameters such as NHL histological subtype, Ann Arbor stage, international prognostic index score, response to treatment and overall survival. Humoral response against at least 1 CTA was observed in 16.5?% of NHL serum samples. However, overall seroreactivity was low, and strong titers (>1:1000) were observed in only two diffuse large B-cell lymphomas patients against CT45.

Conclusion

Our findings are in agreement with most of published studies in this field to date and suggest an overall low expression of CTAs in NHL patients. However, as many new CTAs have been described recently and some of them are found to be highly expressed in NHL cell lines and tumor samples, further studies exploring the expression of different panels of CTAs are needed to evaluate their role as candidates for immunotherapy in NHL patients.  相似文献   

16.
There has been a current resurgence of interest in the use of cell transformation for predicting carcinogenicity, which is based mainly on rodent carcinogenicity data. In view of this renewed interest, this paper critically reviews the published literature concerning the ability of the available assays to detect IARC Group 1 agents (known human carcinogens) and Group 2A agents (probable human carcinogens). The predictivity of the available assays for human and rodent non-genotoxic carcinogens (NGCs), in comparison with standard and supplementary in vitro and in vivo genotoxicity tests, is also discussed. The principal finding is that a surprising number of human carcinogens have not been tested for cell transformation across the three main assays (SHE, Balb/c 3T3 and C3H10T1/2), confounding comparative assessment of these methods for detecting human carcinogens. This issue is not being addressed in the ongoing validation studies for the first two of these assays, despite the lack of any serious logistical issues associated with the use of most of these chemicals. In addition, there seem to be no plans for using exogenous bio-transformation systems for the metabolic activation of pro-carcinogens, as recommended in an ECVAM workshop held in 1999. To address these important issues, it is strongly recommended that consideration be given to the inclusion of more human carcinogens and an exogenous source of xenobiotic metabolism, such as an S9 fraction, in ongoing and future validation studies. While cell transformation systems detect a high level of NGCs, it is considered premature to rely only on this endpoint for screening for such chemicals, as recently suggested. This is particularly important, in view of the fact that there is still doubt as to the relevance of morphological transformation to tumorigenesis in vivo, and the wide diversity of potential mechanisms by which NGCs are known to act. Recent progress with regard to increasing the objectivity of scoring the transformed phenotype, and prospects for developing human cell-based transformation assays, are reviewed.  相似文献   

17.
The recent European Commission REACH (Registration, Evaluation and Authorisation of Chemicals) policy outlines a plan for toxicological testing by using alternative non-animal in vitro methods. In this context, there is a need to develop and standardise high-throughput screening (HTS) methods for studying the cytotoxicity induced by chemicals. Electrochemical impedance spectroscopy (EIS) can be considered as a complementary technique to alternative in vitro testing for studying cell adhesion to the substrate, and can give real-time and kinetic information on cell responses to a toxicant. This paper describes the development of a home-made chip based on impedance spectroscopy, and its application in studying the kinetics of BALB/3T3 cell adhesion and the cellular responses to a toxic product as a function of time. Concentrations of sodium arsenite, ranging from 10 microM up to 1000 microM, were tested in the system, and the results were compared with those obtained with standard protocols used to study basal cytotoxicity induced by chemicals in the BALB/3T3 cell line. The results show that the sensitivity of the developed chip was better than that with the MTT test, with the additional advantages of online monitoring.  相似文献   

18.
Cell transformation assay using BALB/c 3T3 cells, C3H10T1/2 cells and others, can simulate the two-stage carcinogenesis utilized for formation of transformed foci. A sensitive cell transformation assay for tumor initiators as well as promoters has been developed using a v-Ha-ras-transfected BALB/c 3T3 cell line, Bhas 42; these cells are regarded as initiated in the two-stage paradigm of carcinogenesis. To distinguish between initiation and promotion, the initiation assay involves a 2-day treatment of low-density cells, obtained one day after plating, with a test chemical, and the promotion assay involves treatment of near-confluent cells with a test chemical for a period of 12 days (Day 3-14). When Bhas 42 cells were treated with tumor initiators, N-methyl-N'-nitro-N-nitrosoguanidine and 3-methylcholanthrene, transformed foci were induced in the initiation assay but not in the promotion assay. In contrast, tumor promoters, 12-O-tetradecanoylphorbol-13-acetate, lithocholic acid and okadaic acid, gave negative responses in the initiation assay but positive responses in the promotion assay. The results were reproducible with various treatment protocols. Sixteen polycyclic aromatic hydrocarbons were examined using both assays. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene induced focus formation only in the initiation assay. Increase of focus formation was observed in the promotion assay with benzo[e]pyrene, benzo[ghi]perylene, 1-nitropyrene and pyrene. Benz[a]anthracene, benz[b]anthracene, chrysene and perylene showed positive responses in both initiation and promotion assays. Results of initiation and promotion assays of acenaphthylene, anthracene, coronene, 9,10-diphenylanthracene, naphthalene and phenanthrene were negative or equivocal. The present Bhas assays for the detection of either/both initiating and promoting activities of chemicals are sensitive and of high performance compared with other cell transformation assays.  相似文献   

19.
The ECVAM validation concept, which was defined at two validation workshops held in Amden (Switzerland) in 1990 and 1994, and which takes into account the essential elements of prevalidation and biostatistically defined prediction models, has been officially accepted by European Union (EU) Member States and by the Federal regulatory agencies of the USA and the OECD. The ECVAM validation concept was introduced into the ongoing ECVAM/COLIPA validation study of in vitro phototoxicity tests, which ended successfully in 1998. The 3T3 neutral red uptake in vitro phototoxicity test was the first experimentally validated in vitro toxicity test recommended for regulatory purposes by the ECVAM Scientific Advisory Committee (ESAC). It was accepted by the EU into the legislation for chemicals in the year 2000. From 1996 to 1998, two in vitro skin corrosivity tests were successfully validated by ECVAM, and they were also officially accepted into the EU regulations for chemicals in the year 2000. Meanwhile, in 2002, the OECD Test Guidelines Programme is considering the worldwide acceptance of the validated in vitro phototoxicity and corrosivity tests. Finally, from 1997 to 2000, an ECVAM validation study on three in vitro embryotoxicity tests was successfully completed. Therefore, the three in vitro embryotoxicity tests, the whole embryo culture (WEC) test on rat embryos, the micromass (MM) test on limb bud cells of mouse embryos, and the embryonic stem cell test (EST) including a permanent embryonic mouse stem cell line, are considered for routine use in laboratories of the European pharmaceutical and chemicals industries.  相似文献   

20.
The BALB/3T3 clone A31 mouse embryo cell line has been used by many investigators as a model “normal” “fibroblast” line for a variety of in vitro studies. It has been shown, however, that these cells are not “normal” because they will produce tumors within 2–4 months if 3 × 104 cells are implanted subcutaneously in BALB/c mice attached to 0.2 × 5 × 10-mm plastic plates. Previous studies also suggested that these cells were not fibroblasts because they gave rise to tumors with the characteristics of vascular endothelium not fibroblasts. We now report that BALB/3T3 (clone A31), BALB/3T3-T, a proadipocyte subclone of clone A31 cells, and six recent subclones of BALB/3T3-T cells show additional differentiation patterns when tumors derived by implantation of these cells attached to plastic plates are examined. Differentiation into pericytes, chondrocytes, and fibroblasts was observed. We conclude that the BALB/3T3 clone A31 cell line and related lines are multipotent mesenchymal cells which are capable of differentiation into a variety of cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号