首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Escherichia coli ATP-dependent protease Lon degrades ribosomal S2 protein in the presence of inorganic polyphosphate (polyP). In this study, the process of the degradation was investigated in detail. During the degradation, 68 peptides with various sizes (4-29 residues) were produced in a processive fashion. Cleavage occurred at 45 sites, whose P1 and P3 positions were dominantly occupied by hydrophobic residues. These cleavage sites were located preferentially at the regions with rigid secondary structures and the P1 residues of the major cleavage sites appeared to be concealed from the surface of the substrate molecule. Furthermore, polyP changed not only the substrate preference but also the oligomeric structure of the enzyme.  相似文献   

4.
Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of Mg(2+), but dissociated into monomers and/or dimers in its absence. Moreover, Mg(2+)-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires Mg(2+), but not ATP.  相似文献   

5.
SulA protein is known to be one of the physiological substrates of Lon protease, an ATP-dependent protease from Escherichia coli. In this study, we investigated the cleavage specificity of Lon protease toward SulA protein. The enzyme was shown to cleave approximately 27 peptide bonds in the presence of ATP. Among them, six peptide bonds were cleaved preferentially in the early stage of digestion, which represented an apparently unique cleavage sites with mainly Leu and Ser residues at the P1, and P1' positions, respectively, and one or two Gln residues in positions P2-P5. They were located in the central region and partly in the C-terminal region, both of which are known to be important for the function of SulA, such as inhibition of cell growth and interaction with Lon protease, respectively. The other cleavage sites did not represent such consensus sequences, though hydrophobic or noncharged residues appeared to be relatively preferred at the P1 sites. On the other hand, the cleavage in the absence of ATP was very much slower, especially in the central region, than in the presence of ATP. The central region was predicted to be rich in alpha helix and beta sheet structures, suggesting that the enzyme required ATP for disrupting such structures prior to cleavage. Taken together, SulA is thought to contain such unique cleavage sites in its functionally and structurally important regions whose preferential cleavage accelerates the ATP-dependent degradation of the protein by Lon protease.  相似文献   

6.
Conditions of limited proteolysis of the protease Lon from Escherichia coli that provided the formation of fragments approximately corresponding to the enzyme domains were found for studying the domain functioning. A method of isolation of the domains was developed, and their functional characteristics were compared. The isolated proteolytic domain (LonP fragment) of the enzyme was shown to exhibit both peptidase and proteolytic activities; however, it cleaved large protein substrates at a significantly lower rate than the full-size protease Lon. On the other hand, the LonAP fragment, containing both the ATPase and the proteolytic domains, retained almost all of the enzymatic properties of the full-size protein. Both LonP and LonAP predominantly form dimers unlike the native protease Lon functioning as a tetramer. These results suggest that the N-terminal domain of protease Lon plays a considerable role in the process of the enzyme oligomerization.  相似文献   

7.
Lon蛋白酶,也叫蛋白酶La,是一种同质寡聚环状的ATP依赖的蛋白酶,在古生菌、原核生物和真核生物中高度保守。Lon蛋白酶属于AAA+超家族(与多种细胞活性相关的ATP酶)。自Lon蛋白酶被发现以来,许多研究表明Lon的蛋白酶活性对于维持细胞体内平衡、蛋白质量控制和代谢调控起着重要作用。该文综述了近年来Lon蛋白酶的研究进展,主要从Lon蛋白酶的结构和功能、与衰老和疾病的关系等方面进行了系统的阐述。  相似文献   

8.
Lon is an ATP-dependent serine protease that plays a significant role in the quality control of proteins in cells, degrading misfolded proteins and certain short-lived regulatory proteins under stresses as such heat-shock and UV irradiation. It is known that some polymers containing phosphate groups regulate enzymatic activity by binding with Lon. We focused on the phospholipids of biological membrane components such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and cardiolipin (CL), and examined whether or not liposomes containing these phospholipids regulate the enzymatic activity of Lon. CL-containing liposomes specifically inhibited both the proteolytic and ATPase activities of Lon in a dose-dependent manner. In addition, on pull-down assay, we found that CL-containing liposomes selectively bound to Lon. The interaction between CL-containing liposomes and Lon changed with the order of addition of Mg(2+)/ATP. When CL-containing liposomes were added after the addition of Mg(2+)/ATP to Lon, the binding of CL-containing liposomes to Lon was significantly decreased as compared with the reversed order. In fact, we found that CL-containing liposomes bound to Lon, resulting in inhibition of the enzymatic activity of Lon. These results suggest that Lon interacts with CL in biological membranes, which may regulate the functions of Lon as a protein-degrading centre in accordance with environmental changes inside cells.  相似文献   

9.
Arabidopsis thaliana proteome contains 667 proteases; some tens of them are chloroplast-targeted proteins, encoded by genes orthologous to the ones coding for bacterial proteolytic enzymes. It is thought that chloroplast proteases are involved in chloroplasts' proteins turnover and quality control (maturation of nucleus-encoded proteins and removal of nonfunctional ones). Some ATP-dependent chloroplast proteases belonging to FtsH family (especially FtsH2 and FtsH5) are considered to be involved in numerous aspects of chloroplast and whole plant maintenance under non-stressing as well as stressing conditions. This notion is supported by severe phenotype appearance of mutants deficient in these proteases. In contrast to seemingly high physiological importance of chloroplast members of FtsH protease family, only a few individual proteins have been identified so far as their physiological targets (i.e. Lhcb1, Lhcb3, PsbA and Rieske protein). Our knowledge regarding structure and molecular mechanisms of these enzymes' action is limited when compared with what is known about FtsHs of bacterial origin. Equally limited is the knowledge about ATP-dependent Lon4 protease being the single known chloroplast-targeted ortholog of Lon protease of Escherichia coli.  相似文献   

10.
Molybdoenzymes contain a molybdenum cofactor in their active site to catalyze various redox reactions in all domains of life. To decipher crucial steps during their biogenesis, the TorA molybdoenzyme of Escherichia coli had played a major role to understand molybdoenzyme maturation process driven by specific chaperones. TorD, the specific chaperone of TorA, is also involved in TorA protection. Here, we show that immature TorA (apoTorA) is degraded in vivo and in vitro by the Lon protease. Lon interacts with apoTorA but not with holoTorA. Lon and TorD compete for apoTorA binding but TorD binding protects apoTorA against degradation. Lon is the first protease shown to eliminate an immature or misfolded molybdoenzyme probably by targeting its inactive catalytic site.  相似文献   

11.
Lon protease, also known as protease La, is one of the simplest ATP-dependent proteases that plays vital roles in maintaining cellular functions by selectively eliminating misfolded, damaged and certain short-lived regulatory proteins. Although Lon is a homo-oligomer, each subunit of Lon contains both an ATPase and a protease active site. This relatively simple architecture compared to other hetero-oligomeric ATP-dependent proteases such as the proteasome makes Lon a useful paradigm for studying the mechanism of ATP-dependent proteolysis. In this article, we survey some recent developments in the mechanistic characterization of Lon with an emphasis on the utilization of pre-steady-state enzyme kinetic techniques to determine the timing of the ATPase and peptidase activities of the enzyme.  相似文献   

12.
Frase H  Hudak J  Lee I 《Biochemistry》2006,45(27):8264-8274
Lon is a homo-oligomeric ATP-dependent serine protease which functions in the degradation of damaged and certain regulatory proteins. The importance of Lon activity in bacterial pathogenicity has led to its emergence as a target in the development of novel antibiotics. As no potent inhibitors of Lon activity have been reported to date, we sought to identify an inhibitor which could serve as a lead compound in the development of a potent Lon-specific inhibitor. To determine whether a nucleotide- or peptide-based inhibitor would be more effective, we evaluated the steady-state kinetic parameters associated with both ATP and peptide hydrolysis by human and Salmonella enterica serovar Typhimurium Lon. Although the ATP hydrolysis activities of both homologues are kinetically indistinguishable, they display marked differences in peptide substrate specificity. This suggests that a peptide-based inhibitor could be developed which would target bacterial Lon, thereby decreasing side-effects due to cross-reactivity with human Lon. Using Salmonella enterica serovar Typhimurium Lon as a model, we evaluated the IC50 values of a series of commercially available peptide-based inhibitors. Those inhibitors which behave as transition state analogues were the most useful in inhibiting Lon activity. The peptidyl boronate, MG262, was the most potent inhibitor tested (IC50 = 122 +/- 9 nM) and required binding, but not hydrolysis, of ATP to initiate inhibition. We hope to use MG262 as a lead compound in the development of future Lon-specific inhibitors.  相似文献   

13.
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.  相似文献   

14.
Lon protease degrades transfer-messenger RNA-tagged proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacterial trans translation is activated when translating ribosomes are unable to elongate or terminate properly. Small protein B (SmpB) and transfer-messenger RNA (tmRNA) are the two known factors required for and dedicated to trans translation. tmRNA, encoded by the ssrA gene, is a bifunctional molecule that acts both as a tRNA and as an mRNA during trans translation. The functions of tmRNA ensure that stalled ribosomes are rescued, the causative defective mRNAs are degraded, and the incomplete polypeptides are marked for targeted proteolysis. We present in vivo and in vitro evidence that demonstrates a direct role for the Lon ATP-dependent protease in the degradation of tmRNA-tagged proteins. In an endogenous protein tagging assay, lon mutants accumulated excessive levels of tmRNA-tagged proteins. In a reporter protein tagging assay with lambda-CI-N, the protein product of a nonstop mRNA construct designed to activate trans translation, lon mutant cells efficiently tagged the reporter protein, but the tagged protein exhibited increased stability. Similarly, a green fluorescent protein (GFP) construct containing a hard-coded C-terminal tmRNA tag (GFP-SsrA) exhibited increased stability in lon mutant cells. Most significantly, highly purified Lon preferentially degraded the tmRNA-tagged forms of proteins compared to the untagged forms. Based on these results, we conclude that Lon protease participates directly in the degradation of tmRNA-tagged proteins.  相似文献   

15.
Mitochondrial aconitase is sensitive to oxidative inactivation and can aggregate and accumulate in many age-related disorders. Here we report that Lon protease, an ATP-stimulated mitochondrial matrix protein, selectively recognizes and degrades the oxidized, hydrophobic form of aconitase after mild oxidative modification, but that severe oxidation results in aconitase aggregation, which makes it a poor substrate for Lon. Similarly, a morpholino oligodeoxynucleotide directed against the lon gene markedly decreases the amount of Lon protein, Lon activity and aconitase degradation in WI-38 VA-13 human lung fibroblasts and causes accumulation of oxidatively modified aconitase. The ATP-stimulated Lon protease may be an essential defence against the stress of life in an oxygen environment. By recognizing minor oxidative changes to protein structure and rapidly degrading the mildly modified protein, Lon protease may prevent extensive oxidation, aggregation and accumulation of aconitase, which could otherwise compromise mitochondrial function and cellular viability. Aconitase is probably only one of many mitochondrial matrix proteins that are preferentially degraded by Lon protease after oxidative modification.  相似文献   

16.
Calpain 10 is ubiquitously expressed and is one of four mitochondrial matrix proteases. We determined that over-expression or knock-down of mitochondrial calpain 10 results in cell death, demonstrating that mitochondrial calpain 10 is required for viability. Thus, we studied calpain 10 degradation in isolated mitochondrial matrix, mitochondria and in renal proximal tubular cells (RPTC) under control and toxic conditions. Using isolated renal cortical mitochondria and mitochondrial matrix, calpain 10 underwent rapid degradation at 37°C that was blocked with Lon inhibitors but not by calpain or proteasome inhibitors. While exogenous Ca(2+) addition, Ca(2+) chelation or exogenous ATP addition had no effect on calpain 10 degradation, the oxidants tert-butyl hydroperoxide (TBHP) or H(2)O(2) increased the rate of degradation. Using RPTC, mitochondrial and cytosolic calpain 10 increased in the presence of MG132 (Lon/proteasome inhibitor) but only cytosolic calpain 10 increased in the presence of epoxomicin (proteasome inhibitor). Furthermore, TBHP and H(2)O(2) oxidized mitochondrial calpain 10, decreased mitochondrial, but not cytosolic calpain 10, and pretreatment with MG132 blocked TBHP-induced degradation of calpain 10. In summary, mitochondrial calpain 10 is selectively degraded by Lon protease under basal conditions and is enhanced under and oxidizing conditions, while cytosolic calpain 10 is degraded by the proteasome.  相似文献   

17.
18.
The targeted removal of damaged proteins by proteolysis is crucial for cell survival. We have shown previously that the Lon protease selectively degrades oxidized mitochondrial proteins, thus preventing their aggregation and cross-linking. We now show that the Lon protease is a stress-responsive protein that is induced by multiple stressors, including heat shock, serum starvation, and oxidative stress. Lon induction, by pretreatment with low-level stress, protects against oxidative protein damage, diminished mitochondrial function, and loss of cell proliferation induced by toxic levels of hydrogen peroxide. Blocking Lon induction with Lon siRNA also blocks this induced protection. We propose that Lon is a generalized stress-protective enzyme whose decline may contribute to the increased levels of protein damage and mitochondrial dysfunction observed in aging and age-related diseases.  相似文献   

19.
20.
Mechanistic studies of ATP-dependent proteolysis demonstrate that substrate unfolding is a prerequisite for processive peptide bond hydrolysis. We show that mitochondrial Lon also degrades folded proteins and initiates substrate cleavage non-processively. Two mitochondrial substrates with known or homology-derived three-dimensional structures were used: the mitochondrial processing peptidase alpha-subunit (MPPalpha) and the steroidogenic acute regulatory protein (StAR). Peptides generated during a time course of Lon-mediated proteolysis were identified and mapped within the primary, secondary, and tertiary structure of the substrate. Initiating cleavages occurred preferentially between hydrophobic amino acids located within highly charged environments at the surface of the folded protein. Subsequent cleavages proceeded sequentially along the primary polypeptide sequence. We propose that Lon recognizes specific surface determinants or folds, initiates proteolysis at solvent-accessible sites, and generates unfolded polypeptides that are then processively degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号