首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crawford JA  Li W  Pierce BS 《Biochemistry》2011,50(47):10241-10253
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(?-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(?-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(?-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(?-). Following treatment with O(2)(?-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.  相似文献   

2.
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.  相似文献   

3.
Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyzes the oxidation of cysteine to cysteine sulfinic acid, which is the first major step in cysteine catabolism in mammalian tissues. Rat liver CDO was cloned and expressed in Escherichia coli as a 26.8-kDa N-terminal fusion protein bearing a polyhistidine tag. Purification by immobilized metal affinity chromatography yielded homogeneous protein, which was catalytically active even in the absence of the secondary protein-A, which has been reported to be essential for activity in partially purified native preparations. As compared with those existing purification protocols for native CDO, the milder conditions used in the isolation of the recombinant CDO allowed a more controlled study of the properties and activity of CDO, clarifying conflicting findings in the literature. Apo-protein was inactive in catalysis and was only activated by iron. Metal analysis of purified recombinant protein indicated that only 10% of the protein contained iron and that the iron was loosely bound to the protein. Kinetic studies showed that the recombinant enzyme displayed a K(m) value of 2.5 +/- 0.4 mm at pH 7.5 and 37 degrees C. The enzyme was shown to be specific for l-cysteine oxidation, whereas homocysteine inhibited CDO activity.  相似文献   

4.
In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg‐type” enzymes) and some having a Gln substituted for this Arg (“Gln‐type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg‐type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln‐type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron‐bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln‐type” CDO enzymes, we conclude that the “Gln‐type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3‐mercaptopropionate dioxygenases.  相似文献   

5.
Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO(+/-) mice) were crossed to generate CDO(-/-), CDO(+/-), and CDO(+/+) mice. CDO(-/-) mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO(-/-) mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO(-/-) mice than in CDO(+/-) or CDO(+/+) mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO(-/-) mice. H(2)S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H(2)S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H(2)S/sulfane sulfur levels and facilitate the use of H(2)S as a signaling molecule.  相似文献   

6.
Cysteine dioxygenase (CDO) from rat and other mammals exhibits a covalent post-translational modification between the residues C93 and Y157 that is in close proximity to the active site, and whose presence enhances the enzyme's activity. Protein with and without C93-Y157 crosslink migrates as distinct bands in SDS-PAGE, allowing quantification of the relative ratios between the two forms by densitometry of the respective bands. Expression of recombinant rat wild type CDO in Escherichia coli typically produces 40-50% with the C93-Y157 crosslink. A strategy was developed to increase the ratio of the non-crosslinked form in an enzyme preparation of reasonable quantity and purity, allowing direct assessment of the activity of non-crosslinked CDO and mechanism of formation of the crosslink. The presence of ferrous iron and oxygen is a prerequisite for C93-Y157 crosslink formation. Absence of oxygen during protein expression increased the fraction of non-crosslinked CDO, while presence of the metal chelator EDTA had little effect. Metal affinity chromatography was used to enrich non-crosslinked content. Both the enzymatic rate of cysteine oxidation and the amount of cross-linking between C93 and Y157 increased significantly upon exposure of CDO to air/oxygen and substrate cysteine in the presence of iron in a hitherto unreported two-phase process. The instantaneous activity was proportional to the amount of crosslinked enzyme present, demonstrating that the non-crosslinked form has negligible enzymatic activity. The biphasic kinetics suggest the existence of an as yet uncharacterised intermediate in crosslink formation and enzyme activation.  相似文献   

7.
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.  相似文献   

8.
Rat hepatocytes cultured for 3 days in basal medium expressed low levels of cysteine dioxygenase (CDO) and high levels of gamma-glutamylcysteine synthetase (GCS). When the medium was supplemented with 2 mmol/l methionine or cysteine, CDO activity and CDO protein increased by >10-fold and CDO mRNA increased by 1.5- or 3.2-fold. In contrast, GCS activity decreased to 51 or 29% of basal, GCS heavy subunit (GCS-HS) protein decreased to 89 or 58% of basal, and GCS mRNA decreased to 79 or 37% of basal for methionine or cysteine supplementation, respectively. Supplementation with cysteine consistently yielded responses of greater magnitude than did supplementation with an equimolar amount of methionine. Addition of propargylglycine to inhibit cystathionine gamma-lyase activity and, hence, cysteine formation from methionine prevented the effects of methionine, but not those of cysteine, on CDO and GCS expression. Addition of buthionine sulfoximine to inhibit GCS, and thus block glutathione synthesis from cysteine, did not alter the ability of methionine or cysteine to increase CDO. GSH concentration was not correlated with changes in either CDO or GCS-HS expression. The effectiveness of cysteine was equivalent to or greater than that of its precursors (S-adenosylmethionine, cystathionine, homocysteine) or metabolites (taurine, sulfate). Taken together, these results suggest that cysteine itself is an important cellular signal for upregulation of CDO and downregulation of GCS.  相似文献   

9.
Cysteine levels are carefully regulated in mammals to balance metabolic needs against the potential for cytotoxicity. It has been postulated that one of the major regulators of intracellular cysteine levels in mammals is cysteine dioxygenase (CDO). Hepatic expression of this catabolic enzyme increases dramatically in response to increased cysteine availability and may therefore be part of a homeostatic response to shunt excess toxic cysteine to more benign metabolites such as sulfate or taurine. Direct experimental evidence, however, is lacking to support the hypothesis that CDO is capable of altering steady-state intracellular cysteine levels. In this study, we expressed either the wild-type (WT) or a catalytically inactivated mutant (H86A) isoform of CDO in HepG2/C3A cells (which do not express endogenous CDO protein) and cultured them in different concentrations of extracellular cysteine. WT CDO, but not H86A CDO, was capable of reducing intracellular cysteine levels in cells incubated in physiologically relevant concentrations of cysteine. WT CDO also decreased the glutathione pool and potentiated the toxicity of CdCl(2). These results demonstrate that CDO is capable of altering intracellular cysteine levels as well as glutathione levels.  相似文献   

10.
In metazoa and fungi, the catabolic dissimilation of cysteine begins with its sulfoxidation to cysteine sulfinic acid by the enzyme cysteine dioxygenase (CDO). In these organisms, CDO plays an important role in the homeostatic regulation of steady-state cysteine levels and provides important oxidized metabolites of cysteine such as sulfate and taurine. To date, there has been no experimental evidence for the presence of CDO in prokaryotes. Using PSI-BLAST searches and crystallographic information about the active-site geometry of mammalian CDOs, we identified a total of four proteins from Bacillus subtilis, Bacillus cereus, and Streptomyces coelicolor A3(2) that shared low overall identity to CDO (13 to 21%) but nevertheless conserved important active-site residues. These four proteins were heterologously expressed and purified to homogeneity by a single-step immobilized metal affinity chromatography procedure. The ability of these proteins to oxidize cysteine to cysteine sulfinic acid was then compared against recombinant rat CDO. The kinetic data strongly indicate that these proteins are indeed bona fide CDOs. Phylogenetic analyses of putative bacterial CDO homologs also indicate that CDO is distributed among species within the phyla of Actinobacteria, Firmicutes, and Proteobacteria. Collectively, these data suggest that a large subset of eubacteria is capable of cysteine sulfoxidation. Suggestions are made for how this novel pathway of cysteine metabolism may play a role in the life cycle of the eubacteria that have it.  相似文献   

11.
Recent crystal structures of cysteine dioxygenase (CDO) suggest the presence of two posttranslational modifications adjacent to the catalytic iron center: a thioether cross-link between Cys93 and Tyr157 and extra electron density at Cys164 which was variously explained as cystine or cysteine sulfinic acid. Purification of recombinant rat CDO yields “mature” and “immature” forms with distinct electrophoretic mobilities. We have positively identified and characterized the two modifications in the products of three sequential proteolytic digestions using liquid chromatography coupled with tandem mass spectrometry. The cross-link is unique to the mature form and was identified in an ion of m/z 3,225.403, consistent with a Tyr-Cys cross-link of peptides Gly80-Phe94 with His155-Phe167. The cross-link is liable to cleavage by in-source decay and the resulting separate peptides were sequenced by collision-induced dissociation tandem mass spectrometry. Mass-spectrometric analysis of these same and overlapping peptides in the presence or absence of reductants and alkylating agents identified the second modification to be a cystine formed between Cys164 and exogenous cysteine as proposed earlier. Both modifications have been shown to form in the presence of high levels of cysteine and iron. This and the presence of small amounts of an apparently off-pathway cystine at position Cys93 suggest that although these conditions promote CDO maturation, they may actually arise via nonenzymatic, nonphysiological processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Two hepatic enzymes, cysteine dioxygenase (CDO) and gamma-glutamylcysteine synthetase (GCS), play important regulatory roles in the response of cysteine metabolism to changes in dietary sulfur amino acid or protein levels. To examine the time-course of changes in CDO and GCS activities, CDO and GCS-catalytic or heavy subunit protein and mRNA levels, and cysteine and glutathione levels, we adapted rats to either a low protein (LP) or high protein (HP) diet, switched them to the opposite diet, and followed these parameters over 6 days. Hepatic CDO activity and amount, but not mRNA level, increased in response to higher protein intake; the t(1/2) of change for CDO activity or protein level was 22 h for rats switched from a LP to a HP diet and 8 h for rats switched from a HP to a LP diet, suggesting that the HP diet decreased turnover of CDO. Hepatic GCS activity, catalytic subunit amount and mRNA level decreased in response to a higher protein intake. GCS catalytic subunit level changed with a similar t(1/2) for both groups, but the change in GCS activity in rats switched from a LP diet to a HP diet was faster (approximately 16h) than for rats switched from a HP to a LP diet (approximately 74h). Hepatic cysteine and glutathione levels reached new steady states within 12 h (LP to HP) or 24 h (HP to LP). CDO activity appeared to be regulated at the level of protein, probably by diminished turnover of CDO in response to higher protein intake or cysteine level, whereas GCS activity appeared to be regulated both at the level of mRNA and activity state in response to the change in cysteine or protein availability. These findings support a role of cysteine concentration as a mediator of its own metabolism, favoring catabolism when cysteine is high and glutathione synthesis when cysteine is low.  相似文献   

13.
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.  相似文献   

14.
Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe(2+)) and O(2). Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by approximately 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.  相似文献   

15.
Mammalian cysteine dioxygenase (CDO) is a non-heme iron metalloenzyme that catalyzes the first committed step in oxidative cysteine catabolism. The active site coordination of CDO comprises a mononuclear iron ligated by the Nepsilon atoms of three protein-derived histidines, thus representing a new variant on the 2-histidine-1-carboxylate (2H1C) facial triad motif. Nitric oxide was used as a spectroscopic probe in investigating the order of substrate-O2 binding by EPR spectroscopy. In these experiments, CDO exhibits an ordered binding of l-cysteine prior to NO (and presumably O2) similar to that observed for the 2H1C class of non-heme iron enzymes. Moreover, the CDO active site is essentially unreactive toward NO in the absence of substrate, suggesting an obligate ordered binding of l-cysteine prior to NO. Typically, addition of NO to a mononuclear non-heme iron center results in the formation of an {FeNO}7 (S = 3/2) species characterized by an axial EPR spectrum with gx, gy, and gz values of approximately 4, approximately 4, and approximately 2, respectively. However, upon addition of NO to CDO in the presence of substrate l-cysteine, a low-spin {FeNO}7 (S = 1/2) signal that accounts for approximately 85% of the iron within the enzyme develops. Similar {FeNO}7 (S = 1/2) EPR signals have been observed for a variety of octahedral mononuclear iron-nitrosyl synthetic complexes; however, this type of iron-nitrosyl species is not commonly observed for non-heme iron enzymes. Substitution of l-cysteine with isosteric substrate analogues cysteamine, 3-mercaptopropionic acid, and propane thiol did not produce any analogous {FeNO}7 signals (S = 1/2 or 3/2), thus reflecting the high substrate specificity of the enzyme observed by a number of researchers. The unusual {FeNO}7 (S = 1/2) electronic configuration adopted by the substrate-bound iron-nitrosyl CDO (termed {ES-NO}7) is a result of the bidentate thiol/amine coordination of l-cysteine in the NO-bound CDO active site. DFT computations were performed to further characterize this species. The DFT-predicted geometric parameters for {ES-NO}7 are in good agreement with the crystallographically determined substrate-bound active site configuration of CDO and are consistent with known iron-nitrosyl model complexes. Moreover, the computed EPR parameters (g and A values) are in excellent agreement with experimental results for this CDO species and those obtained from comparable synthetic {FeNO}7 (S = 1/2) iron-nitrosyl complexes.  相似文献   

16.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80 degrees C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1-1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling 'in vivo' cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

17.
Hepatic cysteine dioxygenase (CDO) activity is a critical regulator of cellular cysteine concentration and availability of cysteine for anabolic processes and is markedly higher in animals fed diets containing excess sulfur amino acids compared with those fed levels at or below the requirement. Rat hepatocytes responded to a deficiency or excess of cysteine in the culture medium with a decrease or increase in CDO level but no change in CDO mRNA level. The cysteine analog, cysteamine, but not cysteine metabolites or thiol reagents, was also effective in increasing CDO. Inhibitors of the 26S proteasome blocked CDO degradation in cysteine-deficient cells but had little or no effect on CDO concentration in hepatocytes cultured with excess cysteine. High-molecular-mass CDO-ubiquitin conjugates were observed in cells cultured in cysteine-deficient medium, whether or not proteasome inhibitor was present, but these CDO-ubiquitin conjugates were not observed in cells cultured in cysteine-supplemented medium with or without proteasome inhibitor. Similar results were observed for degradation of recombinant CDO expressed in human heptocarcinoma cells cultured in cysteine-deficient or cysteine-supplemented medium. CDO is an example of a mammalian enzyme that is robustly regulated via its substrate, with the presence of substrate blocking the ubiquitination of CDO and, hence, the targeting of CDO for proteasomal degradation. This regulation occurs in primary hepatocytes in a manner that corresponds with changes observed in intact animals.  相似文献   

18.
Because hepatic cysteine dioxygenase (CDO) appears to play the major role in controlling cysteine catabolism in the intact rat, we characterized the effect of a lack of hepatic CDO on the regulation of cysteine and its metabolites at the whole body level. In mice with liver-specific deletion of CDO expression, hepatic and plasma cysteine levels increased. In addition, in mice with liver-specific deletion of CDO expression, the abundance of CDO and the proportion of CDO existing as the mature, more active isoform increased in extrahepatic tissues that express CDO (kidney, brown fat, and gonadal fat). CDO abundance was also increased in the pancreas, where most of the enzyme in both control and liver CDO-knockout mice was in the more active isoform. This upregulation of CDO concentration and active-site cofactor formation were not associated with an increase in CDO mRNA and thus presumably were due to a decrease in CDO degradation and an increase in CDO cofactor formation in association with increased exposure of extrahepatic tissues to cysteine in mice lacking hepatic CDO. Extrahepatic tissues of liver CDO-knockout mice also had higher levels of hypotaurine, consistent with increased metabolism of cysteine by the CDO/cysteinesulfinate decarboxylase pathway. The hepatic CDO-knockout mice were able to maintain normal levels of glutathione, taurine, and sulfate. The maintenance of taurine concentrations in liver as well as in extrahepatic tissues is particularly notable, since mice were fed a taurine-free diet and liver is normally considered the major site of taurine biosynthesis. This redundant capacity for regulation of cysteine concentrations and production of hypotaurine/taurine is additional support for the body's robust mechanisms for control of body cysteine levels and indicates that extrahepatic tissues are able to compensate for a lack of hepatic capacity for cysteine catabolism.  相似文献   

19.
Summary. Cysteine dioxygenase (CDO) plays a critical role in the regulation of cellular cysteine concentration. Because multiple forms of CDO (23kDa, 25kDa, and 68kDa) have been claimed based upon separation and detection using SDS-PAGE/western blotting (with antibodies demonstrated to immunoprecipitate CDO), we further investigated the possibility of more than one CDO isoform. Using either rabbit antibody raised against purified rat liver CDO or against purified recombinant his6-tagged CDO (r-his6-CDO) and using 15% (wt/vol) polyacrylamide for the SDS-PAGE, we consistently detected the 25kDa band, but never detected a 68kDa band, in rat liver, kidney, lung and brain. Nondenatured gel electrophoresis of r-his6-CDO yielded a molecular mass estimate of 25.7kDa and no evidence of dimerization. Mass spectrometry of r-his6-CDO yielded two peaks with molecular masses of 24.1kDa and 24.3kDa. Anion-exchange FPLC of r-his6-CDO also gave two peaks, with the first containing CDO that was 7.5-times as active as the more anionic form that eluted second. When the two peaks recovered from FPLC were run on SDS/PAGE, the first (more active) CDO fraction yielded two bands (perhaps as an artifact of SDS/PAGE), whereas the second (less active) CDO fraction yielded only the 23kDa band. We conclude that the physiologically active form of CDO is the 25kDa (i.e., 23.5kDa based on mass spectrometry) monomer and that this active form is probably derived by post-translational modification of the 23kDa gene product.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号